We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in the false-positive probability (FPP)−nearby false-positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP < 0.015 and NFPP < 10−3), likely planets (FPP < 0.5 and NFPP < 10−3), and likely nearby false positives (NFPP > 10−1). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars.
The present-day envelope of gaseous planets is a relic of how these giant planets originated and evolved. Measuring their elemental composition therefore presents a powerful opportunity to answer long-standing questions regarding planet formation. Obtaining precise observational constraints on the elemental inventory of giant exoplanets has, however, remained challenging owing to the limited simultaneous wavelength coverage of current space-based instruments. Here, we present thermal emission observations of the nontransiting hot Jupiter τ Boo b using the new wide wavelength coverage (0.95–2.50 μm) and high spectral resolution (R = 70,000) CFHT/SPIRou spectrograph. By combining a total of 20 hr of SPIRou data obtained over five nights in a full atmospheric retrieval framework designed for high-resolution data, we constrain the abundances of all the major oxygen- and carbon-bearing molecules and recover a noninverted temperature structure using a new free-shape, nonparametric temperature–pressure profile retrieval approach. We find a volume mixing ratio of log(CO) = − 2.46 − 0.29 + 0.25 and a highly depleted water abundance of less than 0.0072 times the expected value for a solar composition envelope. Combined with upper limits on the abundances of CH4, CO2, HCN, TiO, and C2H2, this results in a gas-phase C/H ratio of 5.85 − 2.82 + 4.44 × solar, consistent with the value of Jupiter, and an envelope C/O ratio robustly greater than 0.60, even when taking into account the oxygen that may be sequestered out of the gas phase. Combined, the inferred supersolar C/H, O/H, and C/O ratios on τ Boo b support a formation scenario beyond the water snowline in a disk enriched in CO owing to pebble drift.
We present a new algorithm for precision radial velocity (pRV) measurements, a line-by-line (LBL) approach designed to handle outlying spectral information in a simple but efficient manner. The effectiveness of the LBL method is demonstrated on two data sets, one obtained with SPIRou on Barnard’s star, and the other with the High Accuracy Radial velocity Planet Searcher (HARPS) on Proxima Centauri. In the near-infrared, the LBL provides a framework for meters-per-second-level accuracy in pRV measurements despite the challenges associated with telluric absorption and sky emission lines. We confirm with SPIRou measurements spanning 2.7 yr that the candidate super-Earth on a 233 day orbit around Barnard’s star is an artifact due to a combination of time sampling and activity. The LBL analysis of the Proxima Centauri HARPS post-upgrade data alone easily recovers the Proxima b signal and also provides a 2σ detection of the recently confirmed 5 day Proxima d planet, but argues against the presence of the candidate Proxima c with a period of 1900 days. We provide evidence that the Proxima c signal is associated with small, unaccounted systematic effects affecting the HARPS-TERRA template-matching radial velocity extraction method for long-period signals. Finally, the LBL framework provides a very effective activity indicator, akin to the FWHM derived from the cross-correlation function, from which we infer a rotation period of 92.1 − 3.5 + 4.2 days for Proxima.
Astronomers do not have a complete picture of the effects of wide-binary companions (semimajor axes greater than 100 au) on the formation and evolution of exoplanets. We investigate these effects using new data from Gaia Early Data Release 3 and the Transiting Exoplanet Survey Satellite mission to characterize wide-binary systems with transiting exoplanets. We identify a sample of 67 systems of transiting exoplanet candidates (with well-determined, edge-on orbital inclinations) that reside in wide visual binary systems. We derive limits on orbital parameters for the wide-binary systems and measure the minimum difference in orbital inclination between the binary and planet orbits. We determine that there is statistically significant difference in the inclination distribution of wide-binary systems with transiting planets compared to a control sample, with the probability that the two distributions are the same being 0.0037. This implies that there is an overabundance of planets in binary systems whose orbits are aligned with those of the binary. The overabundance of aligned systems appears to primarily have semimajor axes less than 700 au. We investigate some effects that could cause the alignment and conclude that a torque caused by a misaligned binary companion on the protoplanetary disk is the most promising explanation.
Dynamical histories of planetary systems, as well as the atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here, we report on the follow-up of a transit signal detected in the TESS sector 19 photometric time series of the M3.0 V star TOI-1685 (2MASS J04342248+4302148). We confirm the planetary nature of the transit signal, which has a period of Pb = 0.6691403−0.0000021+0.0000023 d, using precise radial velocity measurements taken with the CARMENES spectrograph. From the joint photometry and radial velocity analysis, we estimate the following parameters for TOI-1685 b: a mass of Mb = 3.78−0.63+0.63 M⊕, a radius of Rb = 1.70−0.07+0.07 R⊕, which together result in a bulk density of ρb = 4.21−0.82+0.95 g cm−3, and an equilibrium temperature of Teq = 1069−16+16 K. TOI-1685 b is the least dense ultra-short-period planet around an M dwarf known to date. TOI-1685 b is also one of the hottest transiting super-Earth planets with accurate dynamical mass measurements, which makes it a particularly attractive target for thermal emission spectroscopy. Additionally, we report with moderate evidence an additional non-transiting planet candidate in the system, TOI-1685 [c], which has an orbital period of Pc = 9.02−0.12+0.10 d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.