With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system.
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
A fully 3D Bayesian method is described for high resolution reconstruction of images from the Siemens/CTI ECAT EXACT HR+ whole body positron emission tomography (PET) scanner. To maximize resolution recovery from the system we model depth dependent geometric efficiency, intrinsic detector efficiency, photon pair non-colinearity, crystal penetration and inter-crystal scatter. We also explicitly model the effects of axial rebinning and angular mashing on the detection probability or system matrix. By fully exploiting sinogram symmetries and using a factored system matrix and automated indexing schemes, we are able to achieve substantial savings in both the storage size and time required to compute forward and backward projections. Reconstruction times are further reduced using multi-threaded programming on a four processor Unix server. Bayesian reconstructions are computed using a Huber prior and a shifted-Poisson likelihood model that accounts for the effects of randoms subtraction and scatter. Reconstructions of phantom data show that the 3D Bayesian method can achieve improved FWHM resolution and contrast recovery ratios at matched background noise levels compared to both the 3D reprojection method and an OSEM method based on the shifted-Poisson model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.