Accepted for publication in Stochastics: An International Journal of Probability and Stochastic ProcessesWe investigate the algebra of repeated integrals of semimartingales. We prove that a minimal family of semimartingales generates a quasi-shuffle algebra. In essence, to fulfill the minimality criterion, first, the family must be a minimal generator of the algebra of repeated integrals generated by its elements and by quadratic covariation processes recursively constructed from the elements of the family. Second, recursively constructed quadratic covariation processes may lie in the linear span of previously constructed ones and of the family, but may not lie in the linear span of repeated integrals of these. We prove that a finite family of independent Lévy processes that have finite moments generates a minimal family. Key to the proof are the Teugels martingales and a strong orthogonalization of them. We conclude that a finite family of independent Lévy processes form a quasi-shuffle algebra. We discuss important potential applications to constructing efficient numerical methods for the strong approximation of stochastic differential equations driven by Lévy processes.
The objective of this work is to compare several approaches to the process of renormalisation in the context of rough differential equations using the substitution bialgebra on rooted trees known from backward error analysis of B‐series. For this purpose, we present a so‐called arborification of the Hoffman–Ihara theory of quasi‐shuffle algebra automorphisms. The latter are induced by formal power series, which can be seen to be special cases of the cointeraction of two Hopf algebra structures on rooted forests. In particular, the arborification of Hoffman's exponential map, which defines a Hopf algebra isomorphism between the shuffle and quasi‐shuffle Hopf algebra, leads to a canonical renormalisation that coincides with Marcus' canonical extension for semimartingale driving signals. This is contrasted with the canonical geometric rough path of Hairer and Kelly by means of a recursive formula defined in terms of the coaction of the substitution bialgebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.