The evolution of river systems and their related fluxes is considered at various time scales: (i) over the last 18 000 years, under climatic variability control, (ii) over the last 50 to 200 years (Anthropocene) due to direct human impacts. Natural Holocene variations in time and space depend on (i) land-to-ocean connections (endorheism, glacial cover, exposure of continental shelf); (ii) types of natural fluvial filters (e.g., wetlands, lakes, floodplains, estuaries). Anthropocene changes concern (i) land-ocean connection (e.g., partial to total runoff reduction resulting from water management), (ii) modification and removal of natural filters, (iii) creation of new filters, particularly irrigated fields and reservoirs, (iv) acceleration and/or development of material sources from human activities. The total river basin area directly affected by human activities is of the same order of magnitude (> 40 Mkm 2 ) as the total area affected over the last 18 000 years. A tentative analysis of 38 major river systems totaling 55 Mkm 2 is proposed for several criteria: (i) trajectories of Holocene evolution, (ii) occurrence of natural fluvial filters, (iii) present-day fluvial filters: most river basins are unique. Riverine fluxes per unit area are characterized by hot spots that exceed the world average by one order of magnitude. At the Anthropocene (i.e., since 1950), many riverine fluxes have globally increased (sodium, chloride, sulfate, nitrogen, phosphorous, heavy metals), others are stable (calcium, bicarbonate, sediments) or likely to decrease (dissolved silica). Future trajectories of river fluxes will depend on the balance between increased sources of material (e.g., soil erosion, pollution, fertilization), water abstraction for irrigation and the modification of fluvial filters, particularly the occurrence of reservoirs that already intercept half of the water and store at least 30% of river sediment fluxes. In some river systems, retention actually exceeds material production and river fluxes are actually decreasing. These trajectories are specific to each river and to each type of river material. Megacities, mining and industrial districts can be considered as hot spots of contaminants fluxes, while major reservoirs are global-scale sinks for all particulates. Global picture should therefore be determined at a fine resolution, since regional differences in Anthropocene evolution of river fluxes may reach one order of magnitude, as illustrated for total nitrogen.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
''close'' budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets.
Water science finds itself at an interesting and critical crossroads. Sophisticated atmospheric modeling, remote sensing, and Internet‐based exchange of data enable exciting new synergies to develop among scientists, policy‐makers, and the private sector. Paradoxically we find it evermore difficult to validate products from these high‐technology tools and to exploit their full potential due to a severe and sustained decline in available hydrologic data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.