The effects of preamorphizing ion mass on the end-of-range (EOR) damage and subsequent enhanced diffusivity have been investigated. Amorphizing silicon with implants of 22 keV 28Si+, 32 keV 73Ge+, 40 keV 119Sn+, and 45 keV 207Pb+ provided the mass comparisons. Cross-sectional transmission electron microscopy analysis showed that the amorphous layer depths were approximately 400 Å. After postimplantation annealing at 750 °C for 30 min, plan-view transmission electron microscopy (PTEM) revealed that increasing the ion mass decreased the defect size and density. Quantitative analysis of PTEM results also showed that increasing ion mass decreased the population of interstitials trapped in the EOR. Secondary ion mass spectrometry depth profiles of grown-in boron marker layers showed that increasing the ion mass decreased the time average diffusivity enhancements of boron (〈DB〉/DB*).
Fluctuation electron microscopy studies have been performed on several aluminum oxides exposed to different electrochemical conditions. Little is known about amorphous aluminum oxide structures and their relationship with their passivation behaviors. Corrosion studies have shown that exposure of aluminum oxide films to Cl ions in solution reduces the oxide's passivity, and this results in the onset of pitting corrosion. The physical changes that occur in the oxide as a result of Cl exposure have not been previously identified due to the difficulty in investigating the structure of this amorphous material. Fluctuation microscopy is a new electron microscopy technique that is able to detect the presence of medium range order structures in amorphous systems. In this paper, we will report fluctuation microscopy results on amorphous aluminum oxides that have been exposed to Cl ions in solution and compare them with oxides that have seen no electrolyte exposure or that have been exposed to electrolytes that do not contain Cl-,such as SO42- containing electrolytes. We will also compare the Cl-exposed oxides with oxides that have been implanted with Cl ions. The differences in pitting behaviors for these oxidesare consistent with our previous speculation on the effect of medium range order on the passivation behavior of aluminum oxides grown using ozone.
We are continuing our development of a radiation-hard, charged-particle detector consisting of a series of thin parallel conducting foils as a lost ion diagnostic for high yield d-t tokamak fusion plasmas. Advantages of this detector concept include economy, ability to operate in relatively intense neutron/gamma ray radiation backgrounds and at moderately high temperatures, and a modest degree of energy resolution. A detector consisting of four parallel foils of Ni, each of thickness 2.5 μm, was operated in the Joint European Torus during the recent DTE-1 experiment. During the highest yield pulses of this campaign, (16 MW), the flux of energetic alpha particles at the detector was measured to be less than about 2 nA/cm2. This upper limit is significantly greater than the expected flux assuming classical losses and given the geometry of the detector. During most of the nearly 2500 pulses of the DTE-1 experiment for which the detector response has been inspected, a relatively intense (up to 200 nA/cm2) flux of low energy positively charged particles was observed which appears related to the D-α photon flux at the plasma edge. Similar detector designs have been recently evaluated using monoenergetic helium ion beams from the tandem accelerator at Sandia National Laboratories. One such detector, consisting of six foils of 6 μm thick Al demonstrated an energy resolution of about 7% for 7 MeV alpha particles. Possible improvements to this detector concept include the fabrication of an “integrated circuit” like design consisting of alternately deposited layers of insulator and conductor. Future applications of the detector concept include first wall lost ion diagnostics for the ignition device to test engineering concepts and NSTX.
Preamorphization is commonly used to form shallow junction in silicon CMOS devices. The purposeof this experiment was to study the effect of the preamorphizing species' mass on the interstitial concentration at the end-of-range (EOR). Isovalent species of Si, Ge, Sn and Pb were compared. Silicon wafers with a buried boron marker layer (4700 Å deep) were amorphized using implants of 22 keV 28Si+, 32 keV73Ge+, 40 keV 119Sn+ or 45 keV 207Pb+, which resulted in similar amorphous layer depths. All species were implanted at a dose of 5×1014 /cm2. Cross-sectional transmission electron microscopy (XTEM) was used tomeasure amorphous layer depths (approximately 400 Å). Post-implantation anneals were performed at 750 °C for 15 minutes. Plan-view transmission electron microscopy (PTEM) was used to observe and quantify the EOR defect population upon annealing. Secondary ion mass spectrometry (SIMS) was used to monitor the transient enhanced diffusion (TED) of the buried boron marker layer resulting from the EOR damage introduced by the amorphizing implants. Based upon the SIMS results Florida Object Oriented Process Simulator (FLOOPS) calculated the resulting time average diffusivity enhancements. Results showed that increasing the ion mass over a significant range (28 to 207 AMU) not only affects the quantity and type of damage that occurs at the EOR, but results in a reduced diffusivity enhancement.
Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.