This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
BackgroundUrinary extracellular vesicles (uEVs) are a promising source for biomarker discovery, but optimal approaches for normalization, quantification, and characterization in spot urines are unclear.MethodsUrine samples were analyzed in a water-loading study, from healthy subjects and patients with kidney disease. Urine particles were quantified in whole urine using nanoparticle tracking analysis (NTA), time-resolved fluorescence immunoassay (TR-FIA), and EVQuant, a novel method quantifying particles via gel immobilization.ResultsUrine particle and creatinine concentrations were highly correlated in the water-loading study (R2 0.96) and in random spot urines from healthy subjects (R2 0.47–0.95) and patients (R2 0.41–0.81). Water loading reduced aquaporin-2 but increased Tamm-Horsfall protein (THP) and particle detection by NTA. This finding was attributed to hypotonicity increasing uEV size (more EVs reach the NTA size detection limit) and reducing THP polymerization. Adding THP to urine also significantly increased particle count by NTA. In both fluorescence NTA and EVQuant, adding 0.01% SDS maintained uEV integrity and increased aquaporin-2 detection. Comparison of intracellular- and extracellular-epitope antibodies suggested the presence of reverse topology uEVs. The exosome markers CD9 and CD63 colocalized and immunoprecipitated selectively with distal nephron markers.Conclusions uEV concentration is highly correlated with urine creatinine, potentially replacing the need for uEV quantification to normalize spot urines. Additional findings relevant for future uEV studies in whole urine include the interference of THP with NTA, excretion of larger uEVs in dilute urine, the ability to use detergent to increase intracellular-epitope recognition in uEVs, and CD9 or CD63 capture of nephron segment–specific EVs.
IMPORTANCE Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst formation in both kidneys and loss of renal function, eventually leading to a need for kidney replacement therapy. There are limited therapeutic management options. OBJECTIVE To examine the effect of the somatostatin analogue lanreotide on the rate of kidney function loss in patients with later-stage ADPKD. DESIGN, SETTING, AND PARTICIPANTS An open-label randomized clinical trial with blinded end point assessment that included 309 patients with ADPKD from July 2012 to March 2015 at 4 nephrology outpatient clinics in the Netherlands. Eligible patients were 18 to 60 years of age and had an estimated glomerular filtration rate (eGFR) of 30 to 60 mL/min/1.73 m 2. Follow-up of the 2.5-year trial ended in August 2017. INTERVENTIONS Patients were randomized to receive either lanreotide (120 mg subcutaneously once every 4 weeks) in addition to standard care (n = 153) or standard care only (target blood pressure <140/90 mm Hg; n = 152). MAIN OUTCOMES AND MEASURES Primary outcome was annual change in eGFR assessed as slope through eGFR values during the 2.5-year treatment phase. Secondary outcomes included change in eGFR before vs after treatment, incidence of worsening kidney function (start of dialysis or 30% decrease in eGFR), change in total kidney volume and change in quality of life (range: 1 [not bothered] to 5 [extremely bothered]). RESULTS Among the 309 patients who were randomized (mean [SD] age, 48.4 [7.3] years; 53.4% women), 261 (85.6%) completed the trial. Annual rate of eGFR decline for the lanreotide vs the control group was −3.53 vs −3.46 mL/min/1.73 m 2 per year (difference, −0.08 [95% CI, −0.71 to 0.56]; P = .81). There were no significant differences for incidence of worsening kidney function (hazard ratio, 0.87 [95% CI, 0.49 to 1.52]; P = .87), change in eGFR (−3.58 vs −3.45; difference, −0.13 mL/min/1.73 m 2 per year [95% CI, −1.76 to 1.50]; P = .88), and change in quality of life (0.05 vs 0.07; difference, −0.03 units per year [95% CI, −0.13 to 0.08]; P = .67). The rate of growth in total kidney volume was lower in the lanreotide group than the control group (4.15% vs 5.56%; difference, −1.33% per year [95% CI, −2.41% to −0.24%]; P = .02). Adverse events in the lanreotide vs control group included injection site discomfort (32% vs 0.7%), injection site papule (5.9% vs 0%), loose stools (91% vs 6.6%), abdominal discomfort (79% vs 20%), and hepatic cyst infections (5.2% vs 0%). CONCLUSIONS AND RELEVANCE Among patients with later-stage autosomal dominant polycystic kidney disease, treatment with lanreotide compared with standard care did not slow the decline in kidney function over 2.5 years of follow-up. These findings do not support the use of lanreotide for treatment of later-stage autosomal dominant polycystic kidney disease.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Urinary extracellular vesicles (uEVs) are emerging as non‐invasive biomarkers for various kidney diseases, but it is unknown how differences in nephron mass impact uEV excretion. To address this, uEV excretion was measured before and after human kidney donor nephrectomy and rat nephrectomy. In male and female donors, uEVs were quantified in cell‐free spot and 24‐h urine samples using nanoparticle tracking analysis (NTA), EVQuant, and CD9‐time‐resolved fluorescence immunoassay. Female donors had significantly lower total kidney volume (TKV) and excreted 49% fewer uEVs than male donors. uEV excretion correlated positively with estimated glomerular filtration rate (eGFR), creatinine clearance, and TKV (R's between 0.6 and 0.7). uEV excretion rate could also be predicted from spot urines after multiplying spot uEV/creatinine by 24‐h urine creatinine. Donor nephrectomy reduced eGFR by 36% ± 10%, but the excretion of uEVs by only 16% (CD9+ uEVs ‐37%, CD9‐ uEVs no decrease). Donor nephrectomy increased the podocyte marker WT‐1 and the proximal tubule markers NHE3, NaPi‐IIa, and cubilin in uEVs two‐ to four‐fold when correcting for the nephrectomy. In rats, the changes in GFR and kidney weight correlated with the changes in uEV excretion rate (R = 0.46 and 0.60, P < 0.01). Furthermore, the estimated degree of hypertrophy matched the change in uEV excretion rate (1.4‐ to 1.5‐fold after uninephrectomy and four‐fold after 5/6th nephrectomy). Taken together, our data show that uEV excretion depends on nephron mass, and that nephrectomy reduces uEV excretion less than expected based on nephron loss due to compensatory hypertrophy. The major implication of our findings is that a measure for nephron mass or uEV excretion rate should be included when comparing uEV biomarkers between individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.