Based on recent experimental data, we have developed a conductance-based computational network model of the subthalamic nucleus and the external segment of the globus pallidus in the indirect pathway of the basal ganglia. Computer simulations and analysis of this model illuminate the roles of the coupling architecture of the network, and associated synaptic conductances, in modulating the activity patterns displayed by this network. Depending on the relationships of these coupling parameters, the network can support three general classes of sustained firing patterns: clustering, propagating waves, and repetitive spiking that may show little regularity or correlation. Each activity pattern can occur continuously or in discrete episodes. We characterize the mechanisms underlying these rhythms, as well as the influence of parameters on details such as spiking frequency and wave speed. These results suggest that the subthalamopallidal circuit is capable both of correlated rhythmic activity and of irregular autonomous patterns of activity that block rhythmicity. Increased striatal input to, and weakened intrapallidal inhibition within, the indirect pathway can switch the behavior of the circuit from irregular to rhythmic. This may be sufficient to explain the emergence of correlated oscillatory activity in the subthalamopallidal circuit after destruction of dopaminergic neurons in Parkinson's disease and in animal models of parkinsonism. Key words: basal ganglia; subthalamic nucleus; globus pallidus; computational models; oscillations; synchrony; Parkinson's diseaseMost current models of the basal ganglia are static models, in that they represent the inputs and outputs of the component nuclei as firing rates. For example, the Albin et al. (1989) model, commonly used to explain the symptoms of Parkinsonism, views the interactions of the direct and indirect pathway as constant in time and explains the symptoms of Parkinson's disease in terms of changes in mean rate of the basal ganglia output (Wichmann and DeLong, 1996). In contrast, recent experimental studies have not strongly confirmed the predicted changes in mean rate in these structures under dopamine depletion, but have instead revealed prominent low-frequency periodicity (4 -30 Hz) of firing and dramatically increased correlations among neurons in the external segment of the globus pallidus (GPe) and the subthalamic nucleus (STN) (Bergman et al., 1994;Nini et al., 1995;Magnin et al., 2000;Raz et al., 2000;Brown et al., 2001). It is remarkable that the changes in firing pattern seen in those structures do not appear to be attributable to comparable changes in the firing patterns of striatal output cells, although cholinergic striatal interneurons show changes comparable with those seen in the globus pallidus (Raz et al., 1996). The authors of those studies have proposed that a rate model of the basal ganglia is inadequate to capture the dynamic interaction of the STN and GPe that may generate these pathological changes.In particular, such dynamic interactions ma...
In vivo intracellular recordings of spontaneous activity of neostriatal spiny cells revealed two-state behavior, i.e., characteristic shifts of membrane potential between two preferred levels. The more polarized level, called the Down state, varied among neurons from -61 to -94 mV. The more depolarized level, called the Up state, varied among neurons form -71 to -40 mV. For any one neuron, the membrane potential in the Up and Down states was constant over the period of observation (from 15 min to 4 hr), and the cells spent little time in transition between states. The level of membrane potential noise was higher in the Up state than in the Down state. Spontaneous membrane potential fluctuations were not abolished by experimental alteration of the membrane potential, but the time spent in each state was altered when intracellular current was used to vary the baseline membrane potential. Neither the sodium nor the calcium action potential that could be evoked by depolarization of spiny neurons was required for the occurrence of spontaneous shifts of membrane potential. Blockade of these action potentials using intracellular injection of QX314 and D890, respectively, altered neither the incidence of the membrane potential shifts nor the preferred membrane potential in either state. In contrast, antagonism of voltage-dependent potassium channels with intracellular cesium altered membrane potential shifts. In the presence of QX314 and D890, intracellular injection of cesium caused little or no change in the Down state and a large depolarizing shift in the Up state (to about -20 mV). Under these circumstances, the neuron responded to current in a nearly linear manner, and membrane conductance was found to be increased in the Up state, attributable to a membrane conductance with the same reversal potential as that of the synaptic potential evoked by cortical stimulation. These results indicate that the event underlying the Up state is a maintained barrage of synaptic excitation, but that the membrane potential achieved during the Up state in neostriatal spiny neurons is determined by dendritic potassium channels that clamp the membrane potential at a level determined by their voltage sensitivity. Neostriatal spiny neurons ordinarily receive enormously powerful excitation, which would drive the cells to saturation, and probably destroy them, if it were not for these potassium currents.
1. Spontaneous fluctuations of membrane potential, patterns of spontaneous firing, dendritic branching patterns, and intracortical and striatal axonal arborizations were compared for two types of corticostriatal neurons in the medial agranular cortex of urethan-anesthetized rats: 1) pyramidal tract (PT) cells identified by antidromic activation from the medullary pyramid and 2) crossed corticostriatal (CST) neurons identified by antidromic activation from the contralateral neostriatum. The ipsilateral corticostriatal projections of intracellularly stained PT neurons as well as contralateral corticostriatal neurons were confirmed after labeling by intracellular injection of biocytin. 2. All well-stained PT neurons had intracortical and intrastriatal collaterals. The more common type (6 of 8) was a large, deep layer V neuron that had an extensive intracortical axon arborization but a limited axon arborization in the neostriatum. The less common type of PT neuron (2 of 8) was a medium-sized, superficial layer V neuron that had a limited intracortical axon arborization but a larger and more dense intrastriatal axonal arborization. Both subclasses of PT neurons had anatomic and physiological properties associated with slow PT cells in cats and monkeys and conduction velocities < 10 m/s. All of the PT cells but one were regular spiking cells. The exception cell fired intrinsic bursts. 3. Intracellularly stained CST neurons were located in the superficial half of layer V and the deep part of layer III. Their layer I apical dendrites were few and sparsely branched. Their axons gave rise to an extensive arbor of local axon collaterals that distributed in the region of the parent neuron, frequently extending throughout the more superficial layers, including layer I. Axon collaterals were also traced to the corpus callosum, as expected from their contralateral projections, and they contributed axon collaterals to the ipsilateral neostriatum. In the neostriatum, these axons formed extended arborizations sparsely occupying a large volume of striatal tissue. All CST neurons were regular spiking cells. 4. Both types of cells displayed spontaneous membrane fluctuations consisting of a polarized state (-60 to -90 mV) that was interrupted by 0.1- to 3.0-s periods of depolarization (-55 to -45 mV) accompanied by action potentials. The membrane potential was relatively constant in each state, and transitions between the depolarized and hyperpolarized states were sometimes periodic with a frequency of 0.3-1.5 Hz. A much faster (30-45 Hz) subthreshold oscillation of the membrane potential was observed only in the depolarized state and triggered action potentials that locked to the depolarizing peaks of this rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.