The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.
Assessing
the physical stability of proteins is one of the most
important challenges in the development, manufacture, and formulation
of biotherapeutics. Here, we describe a method for combining and automating
circular dichroism and intrinsic protein fluorescence spectroscopy.
By robotically injecting samples from a 96-well plate into an optically
compliant capillary flow cell, complementary information about the
secondary and tertiary structural state of a protein can be collected
in an unattended manner from considerably reduced volumes of sample
compared to conventional techniques. We demonstrate the accuracy and
reproducibility of this method. Furthermore, we show how structural
screening can be used to monitor unfolding of proteins in two case
studies using (i) a chaotropic denaturant (urea) and (ii) low-pH buffers
used for monoclonal antibody (mAb) purification during Protein A chromatography.
Over the past ten years there has been increasing interest in the conjugation of exogenous compounds to the surface of the M13 bacteriophage. M13 offers a convenient scaffold for the development of nanoassemblies with useful functions, such as highly specific drug delivery and pathogen detection. However, the progress of these technologies has been hindered by the limited efficiency of conjugation to the bacteriophage. Here we generate a mutant version of M13 with an additional lysine residue expressed on the outer surface of the M13 major coat protein, pVIII. We show that this mutation is accommodated by the bacteriophage and that up to an additional 520 exogenous groups can be attached to the bacteriophage surface via amine-directed conjugation. These results could aid the development of high payload drug delivery nanoassemblies and pathogen detection systems with increased sensitivity.
Link to publication on Research at Birmingham portal
General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.