This is a submitted version of a paper published in IEEE transactions on microwave theory and techniques.Citation for the published paper: Nader, C., Landin, P., Van Moer, W., Björsell, N., Händel, P. (2011) Abstract-In this paper, we evaluate the effect of applying peak-to-average power ratio (PAPR) reduction and digital pre-distortion (DPD) on two types of radio frequency power amplifiers when an orthogonal frequency division multiplexing (OFDM) signal is used. The power amplifiers under test are a standard class-AB amplifier and a Doherty amplifier. The PAPR reduction methods are based on a state-of-the art convex optimization formulation and on the standard clipping and filtering technique. The DPD method consists of modeling the behavior of the power amplifier using a parallel Hammerstein model, and then extracting the inverse parameters based on the indirect learning architecture. To achieve better DPD performance, extracting the DPD parameters based on multiple-step iterations is investigated. The cases where PAPR reduction and DPD are applied separately and combined are studied and investigated. Power amplifier figures of merit are evaluated. Good performance is shown when combining both pre-processing techniques up to a certain operating point where DPD performance deteriorates due to generation of strong peaks in the signal. In addition, a difference in the power amplifier behavior is reported and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.