Elucidating the connection between genotype, phenotype, and adaptation in wild populations is fundamental to the study of evolutionary biology, yet it remains an elusive goal, particularly for microscopic taxa, which comprise the majority of life. Even for microbes that can be reliably found in the wild, defining the boundaries of their populations and discovering ecologically relevant phenotypes has proved extremely difficult. Here, we have circumvented these issues in the microbial eukaryote Neurospora crassa by using a "reverse-ecology" population genomic approach that is free of a priori assumptions about candidate adaptive alleles. We performed Illumina whole-transcriptome sequencing of 48 individuals to identify single nucleotide polymorphisms. From these data, we discovered two cryptic and recently diverged populations, one in the tropical Caribbean basin and the other endemic to subtropical Louisiana. We conducted high-resolution scans for chromosomal regions of extreme divergence between these populations and found two such genomic "islands." Through growthrate assays, we found that the subtropical Louisiana population has a higher fitness at low temperature (10°C) and that several of the genes within these distinct regions have functions related to the response to cold temperature. These results suggest the divergence islands may be the result of local adaptation to the 9°C difference in average yearly minimum temperature between these two populations. Remarkably, another of the genes identified using this unbiased, whole-genome approach is the well-known circadian oscillator frequency, suggesting that the 2.4°-10.6°difference in latitude between the populations may be another important environmental parameter.ecological genomics | genome scan | fungi | circadian clock D iscovering the genetic basis behind adaptive phenotypes has long been considered the holy grail of evolutionary genetics. Although there are now several studies that have succeeded in identifying genes responsible for such phenotypes, the majority of them use a "forward-ecology" approach whereby candidate genes are identified on the basis of their having a function related to conspicuous traits, such as pigmentation (1-4). A paucity of obvious phenotypic traits has been a major impediment for studying adaptation in microbes because these organisms are, by nature, inconspicuous. However, next-generation sequencing technology has made it possible for individual laboratories to acquire whole-genome sequence information across populations. This innovation has enabled an unbiased "reverse-ecology" approach whereby genes with functions related to ecologically relevant traits can be identified by examining patterns of genetic diversity within and between populations and identifying candidate genes as those showing the signature of recent positive selection and/or divergent adaptation between populations (5).
The genomes of the hemiascomycetes Saccharomyces cerevisiae and Ashbya gossypii have been completely sequenced, allowing a comparative analysis of these two genomes, which reveals that a small number of genes appear to have entered these genomes as a result of horizontal gene transfer from bacterial sources. One potential case of horizontal gene transfer in A. gossypii and 10 potential cases in S. cerevisiae were identified, of which two were investigated further. One gene, encoding the enzyme dihydroorotate dehydrogenase (DHOD), is potentially a case of horizontal gene transfer, as shown by sequencing of this gene from additional bacterial and fungal species to generate sufficient data to construct a well-supported phylogeny. The DHODencoding gene found in S. cerevisiae, URA1 (YKL216W), appears to have entered the Saccharomycetaceae after the divergence of the S. cerevisiae lineage from the Candida albicans lineage and possibly since the divergence from the A. gossypii lineage. This gene appears to have come from the Lactobacillales, and following its acquisition the endogenous eukaryotic DHOD gene was lost. It was also shown that the bacterially derived horizontally transferred DHOD is required for anaerobic synthesis of uracil in S. cerevisiae. The other gene discussed in detail is BDS1, an aryl-and alkyl-sulfatase gene of bacterial origin that we have shown allows utilization of sulfate from several organic sources. Among the eukaryotes, this gene is found in S. cerevisiae and Saccharomyces bayanus and appears to derive from the alpha-proteobacteria.
The synthesis of biotin, a vitamin required for many carboxylation reactions, is a variable trait in Saccharomyces cerevisiae. Many S. cerevisiae strains, including common laboratory strains, contain only a partial biotin synthesis pathway. We here report the identification of the first step necessary for the biotin synthesis pathway in S. cerevisiae. The biotin auxotroph strain S288c was able to grow on media lacking biotin when BIO1 and the known biotin synthesis gene BIO6 were introduced together on a plasmid vector. BIO1 is a paralog of YJR154W, a gene of unknown function and adjacent to BIO6. The nature of BIO1 illuminates the remarkable evolutionary history of the biotin biosynthesis pathway in S. cerevisiae. This pathway appears to have been lost in an ancestor of S. cerevisiae and subsequently rebuilt by a combination of horizontal gene transfer and gene duplication followed by neofunctionalization. Unusually, for S. cerevisiae, most of the genes required for biotin synthesis in S. cerevisiae are grouped in two subtelomeric gene clusters. The BIO1-BIO6 functional cluster is an example of a cluster of genes of ''dispensable function,'' one of the few categories of genes in S. cerevisiae that are positionally clustered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.