Elucidating the connection between genotype, phenotype, and adaptation in wild populations is fundamental to the study of evolutionary biology, yet it remains an elusive goal, particularly for microscopic taxa, which comprise the majority of life. Even for microbes that can be reliably found in the wild, defining the boundaries of their populations and discovering ecologically relevant phenotypes has proved extremely difficult. Here, we have circumvented these issues in the microbial eukaryote Neurospora crassa by using a "reverse-ecology" population genomic approach that is free of a priori assumptions about candidate adaptive alleles. We performed Illumina whole-transcriptome sequencing of 48 individuals to identify single nucleotide polymorphisms. From these data, we discovered two cryptic and recently diverged populations, one in the tropical Caribbean basin and the other endemic to subtropical Louisiana. We conducted high-resolution scans for chromosomal regions of extreme divergence between these populations and found two such genomic "islands." Through growthrate assays, we found that the subtropical Louisiana population has a higher fitness at low temperature (10°C) and that several of the genes within these distinct regions have functions related to the response to cold temperature. These results suggest the divergence islands may be the result of local adaptation to the 9°C difference in average yearly minimum temperature between these two populations. Remarkably, another of the genes identified using this unbiased, whole-genome approach is the well-known circadian oscillator frequency, suggesting that the 2.4°-10.6°difference in latitude between the populations may be another important environmental parameter.ecological genomics | genome scan | fungi | circadian clock D iscovering the genetic basis behind adaptive phenotypes has long been considered the holy grail of evolutionary genetics. Although there are now several studies that have succeeded in identifying genes responsible for such phenotypes, the majority of them use a "forward-ecology" approach whereby candidate genes are identified on the basis of their having a function related to conspicuous traits, such as pigmentation (1-4). A paucity of obvious phenotypic traits has been a major impediment for studying adaptation in microbes because these organisms are, by nature, inconspicuous. However, next-generation sequencing technology has made it possible for individual laboratories to acquire whole-genome sequence information across populations. This innovation has enabled an unbiased "reverse-ecology" approach whereby genes with functions related to ecologically relevant traits can be identified by examining patterns of genetic diversity within and between populations and identifying candidate genes as those showing the signature of recent positive selection and/or divergent adaptation between populations (5).
Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use cis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the Male Specific Lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (i.e. TE domestication). The recently formed neo X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, while the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE mediated rewiring of networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of non-functional regions.
Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305-E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.