The mechanical properties of carbon nanotubes such as low density, high stiffness, and exceptional strength make them ideal candidates for reinforcement material in a wide range of high-performance composites. Molecular dynamics simulations are used to predict the tensile response of fibers composed of aligned carbon nanotubes with intermolecular bonds of interstitial carbon atoms. The effects of bond density and carbon nanotube length distribution on fiber strength and stiffness are investigated. The interstitial carbon bonds significantly increase load transfer between the carbon nanotubes over that obtained with van der Waals forces. The simulation results indicate that fibers with tensile strengths to 60 GPa could be produced by employing interstitial cross-link atoms. The elastic modulus of the fibers is also increased by the bonds.
We performed tight-binding molecular dynamics on single-walled carbon nanotubes with and without a variety of defects to study their effect on the nanotube modulus and failure through bond rupture. For a pristine (5,5) nanotube, Young's modulus was calculated to be approximately 1.1 TPa, and brittle rupture occurred at a strain of 17% under quasistatic loading. The predicted modulus is consistent with values from experimentally derived thermal vibration and pull test measurements. The defects studied consist of moving or removing one or two carbon atoms, and correspond to a 1.4% defect density. The occurrence of a Stone-Wales defect does not significantly affect Young's modulus, but failure occurs at 15% strain. The occurrence of a pair of separated vacancy defects lowers Young's modulus by approximately 160 GPa and the critical or rupture strain to 13%. These defects apparently act independently, since one of these defects alone was independently determined to lower Young's modulus by approximately 90 GPa, also with a critical strain of 13%. When the pair of vacancy defects adjacent, however, Young's modulus is lowered by only approximately 100 GPa, but with a lower critical strain of 11%. In all cases, there is noticeable strain softening, for instance, leading to an approximately 250 GPa drop in the apparent secant modulus at 10% strain. When a chiral (10,5) nanotube with a vacancy defect was subjected to tensile strain, failure occurred through a continuous spiral-tearing mechanism that maintained a high level of stress (2.5 GPa) even as the nanotube unraveled. Since the statistical likelihood of defects occurring near each other increases with nanotube length, these studies may have important implications for interpreting the experimental distribution of moduli and critical strains.
When pyrimidine-functionalized carbon nanotubes were incubated with single-stranded DNA ligase, formations of macroscopic aggregates were observed. Wet-cell transmission electron microscopy imaging revealed that the nanotubes were radially bound to form a 3D latticelike structure. These structures were not observed in control reactions lacking ligase or adenosine triphosphate. Raman spectroscopy analysis revealed no spectra indicative of carbon nanotubes in ligase-unamended controls; however, spectra were observed in radial breathing mode and in the G and G' bands in reactions containing ligase. Furthermore, the addition of deoxyribonuclease to the ligated reactions dispersed the aggregates, and a reduction in Raman spectral intensity was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.