[1] Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http:// chain.physics.unb.ca/chain.
We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large-and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics. CARRANO AND RINOTWO-COMPONENT IRREGULARITY SPECTRA 789 PUBLICATIONS
Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (250–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.
Abstract. We report on the longitudinal, local time and seasonal occurrence of equatorial plasma bubbles (EPBs) and L band (GPS) scintillations over equatorial Africa. The measurements were made in 2010, as a first step toward establishing the climatology of ionospheric irregularities over Africa. The scintillation intensity is obtained by measuring the standard deviation of normalized GPS signal power. The EPBs are detected using an automated technique, where spectral analysis is used to extract and identify EPB events from the GPS TEC measurements.Overall, the observed seasonal climatology of the EPBs as well as GPS scintillations in equatorial Africa is adequately explained by geometric arguments, i.e., by the alignment of the solar terminator and local geomagnetic field, or STBA hypothesis (Tsunoda, 1985(Tsunoda, , 2010a. While plasma bubbles and scintillations are primarily observed during equinoctial periods, there are longitudinal differences in their seasonal occurrence statistics. The Atlantic sector has the most intense, longest lasting, and highest scintillation occurrence rate in-season. There is also a pronounced increase in the EPB occurrence rate during the June solstice moving west to east. In Africa, the seasonal occurrence shifts towards boreal summer solstice, with fewer occurrences and shorter durations in equinox seasons. Our results also suggest that the occurrence of plasma bubbles and GPS scintillations over Africa are well correlated, with scintillation intensity depending on depletion depth. A question remains about the possible physical mechanisms responsible for the difference in the occurrence phenomenology of EPBs and GPS scintillations between different regions in equatorial Africa.
[1] Total electron content (TEC) measured by Global Positioning System (GPS) receivers in the United States Great Plains is examined for three nights with large thunderstorms and for one night with little thunderstorm activity. The GPS TEC data are fit with a polynomial, and the variations are estimated by subtracting this fit from the data. We found that anomalous TEC variations are closely associated in time and space to the large underlying thunderstorms. The largest storm-related TEC variation is observed to be~1.4 total electron content unit (TECU) over a typical nighttime background value of several TECUs. The variations near the storm appear to have more high-frequency content than those away from the storm, with periods of minutes to tens of minutes. No detectable localized TEC variation is observed for the thunderstorm-quiet night. Citation: Lay, E. H., X.-M. Shao, and C. S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.