Major depressive disorder is associated with aberrant resting-state functional connectivity across multiple brain networks supporting emotion processing, executive function, and reward processing. The purpose of this study was to determine whether patterns of resting-state connectivity between brain regions predict differential outcome to antidepressant medication (sertraline) compared with placebo.Methods: Participants in the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study underwent structural and resting-state functional MRI at baseline. Participants were then randomly assigned to receive either sertraline or placebo treatment for 8 weeks (N=279). A region of interest-based approach was utilized to compute functional connectivity between brain regions. Linear mixed-model intent-to-treat analyses were used to identify brain regions that moderated (i.e., differentially predicted) outcomes between the sertraline and placebo arms.Results: Prediction of response to sertraline involved several within-and between-network connectivity patterns. In general, higher connectivity within the default mode network predicted better outcomes specifically for sertraline, as did greater between-network connectivity of the default mode and executive control networks. In contrast, both placebo and sertraline outcomes were predicted (in opposite directions) by between-network hippocampal connectivity.Conclusions: This study identified specific functional network-based moderators of treatment outcome involving brain networks known to be affected by major depression. Specifically, functional connectivity patterns of brain regions between and within networks appear to play an important role in identifying a favorable response for a drug treatment for major depressive disorder.
Metabolomics is a developing and promising tool for exploring molecular pathways underlying symptoms of depression and predicting depression recovery. The AbsoluteIDQ™ p180 kit was used to investigate whether plasma metabolites (sphingomyelins, lysophosphatidylcholines, phosphatidylcholines, and acylcarnitines) from a subset of participants in the Combining Medications to Enhance Depression Outcomes (CO-MED) trial could act as predictors or biologic correlates of depression recovery. Participants in this trial were assigned to one of three pharmacological treatment arms: escitalopram monotherapy, bupropion-escitalopram combination, or venlafaxine-mirtazapine combination. Plasma was collected at baseline in 159 participants and again 12 weeks later at study exit in 83 of these participants. Metabolite concentrations were measured and combined with clinical and sociodemographic variables using the hierarchical lasso to simultaneously model whether specific metabolites are particularly informative of depressive recovery. Increased baseline concentrations of phosphatidylcholine C38:1 showed poorer outcome based on change in the Quick Inventory of Depressive Symptoms (QIDS). In contrast, an increased ratio of hydroxylated sphingomyelins relative to non-hydroxylated sphingomyelins at baseline and a change from baseline to exit suggested a better reduction of symptoms as measured by QIDS score. All metabolite-based models performed superior to models only using clinical and sociodemographic variables, suggesting that metabolomics may be a valuable tool for predicting antidepressant outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.