The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8 ؉ T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8؉ T cell responses after live attenuated dengue vaccination and show that CD8 ؉ T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. IMPORTANCEThe development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV serotypes, despite three subsequent immunizations and detection of measurable neutralizing antibodies to each serotype in most subjects. These results challenge the hypothesis that seroconversion is the only reliable correlate of protection. Here, we show that CD8 ؉ T cell responses in vaccinees were readily detectable and comparable to natural dengue virus infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection in natural immunity and vaccination against DENV. Infections with dengue virus (DENV) occur with high incidence in more than 100 countries around the world. Recent reports estimate the number of annual infections with any of the four DENV serotypes (DENV1 to -4) to be as high as 390 million, of which 96 million manifest as clinically significant diseases, including life-threatening conditions such as dengue hemorrhagic fever and dengue shock syndrome (1). This constitutes an increasing public health problem in tropical and subtropical regions and underscores the urgent need f...
TV003 induced a trivalent or greater antibody response in 90% of flavivirus-naive vaccinees and is a promising candidate for the prevention of dengue. Race was identified as a factor influencing the infectivity of the LATV viruses, reflecting observations of the effect of race on disease severity in natural dengue infection.
SummaryThe Bacillus subtilis structural maintenance of chromosomes (SMC) protein is a member of a large family of proteins involved in chromosome organization. We found that SMC is a moderately abundant protein ( ~ 1000 dimers per cell). In vivo cross-linking and immunoprecipitation assays revealed that SMC binds to many regions on the chromosome. Visualization of SMC in live cells using a fusion to the green fluorescent protein (GFP) and in fixed cells using immunofluorescence microscopy indicated that a portion of SMC localizes as discrete foci in positions similar to that of the DNA replication machinery (replisome). When visualized simultaneously, SMC and the replisome were often in similar regions of the cell but did not always co-localize. Persistence of SMC foci did not depend on ongoing replication, but did depend on ScpA and ScpB, two proteins thought to interact with SMC. Our results indicate that SMC is bound to many sites on the chromosome and a concentration of SMC is localized near replication forks, perhaps there to bind and organize newly replicated DNA.
BackgroundLeptospirosis is an important zoonotic disease that causes considerable morbidity and mortality globally, primarily in residents of urban slums. While contact with contaminated water plays a critical role in the transmission of leptospirosis, little is known about the distribution and abundance of pathogenic Leptospira spp. in soil and the potential contribution of this source to human infection.Methods/Principal findingsWe collected soil samples (n = 70) from three sites within an urban slum community endemic for leptospirosis in Salvador, Brazil. Using qPCR of Leptospira genes lipl32 and 16S rRNA, we quantified the pathogenic Leptospira load in each soil sample. lipl32 qPCR detected pathogenic Leptospira in 22 (31%) of 70 samples, though the median concentration among positive samples was low (median = 6 GEq/g; range: 4–4.31×102 GEq/g). We also observed heterogeneity in the distribution of pathogenic Leptospira at the fine spatial scale. However, when using 16S rRNA qPCR, we detected a higher proportion of Leptospira-positive samples (86%) and higher bacterial concentrations (median: 4.16×102 GEq/g; range: 4–2.58×104 GEq/g). Sequencing of the qPCR amplicons and qPCR analysis with all type Leptospira species revealed that the 16S rRNA qPCR detected not only pathogenic Leptospira but also intermediate species, although both methods excluded saprophytic Leptospira. No significant associations were identified between the presence of pathogenic Leptospira DNA and environmental characteristics (vegetation, rat activity, distance to an open sewer or a house, or soil clay content), though samples with higher soil moisture content showed higher prevalences.Conclusion/SignificanceThis is the first study to successfully quantify the burden of pathogenic Leptospira in soil from an endemic region. Our results support the hypothesis that soil may be an under-recognized environmental reservoir contributing to transmission of pathogenic Leptospira in urban slums. Consequently, the role of soil should be considered when planning interventions aimed to reduce the burden of leptospirosis in these communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.