Radiologic imaging is claimed to carry an iatrogenic risk of cancer, based on an uninformed commitment to the 70-y-old linear nothreshold hypothesis (LNTH). Credible evidence of imaging-related low-dose (,100 mGy) carcinogenic risk is nonexistent; it is a hypothetical risk derived from the demonstrably false LNTH. On the contrary, low-dose radiation does not cause, but more likely helps prevent, cancer. The LNTH and its offspring, ALARA (as low as reasonably achievable), are fatally flawed, focusing only on molecular damage while ignoring protective, organismal biologic responses. Although some grant the absence of low-dose harm, they nevertheless advocate the "prudence" of dose optimization (i.e., using ALARA doses); but this is a radiophobia-centered, not scientific, approach. Medical imaging studies achieve a diagnostic purpose and should be governed by the highest science-based principles and policies. The LNTH is an invalidated hypothesis, and its use, in the form of ALARA dosing, is responsible for misguided concerns promoting radiophobia, leading to actual risks far greater than the hypothetical carcinogenic risk purportedly avoided. Further, the myriad benefits of imaging are ignored. The present work calls for ending the radiophobia caused by those asserting the need for dose optimization in imaging: the low-dose radiation of medical imaging has no documented pathway to harm, whereas the LNTH and ALARA most assuredly do.
A debate exists within the medical community on whether the linear no-threshold model of ionizing radiation exposure accurately predicts the subsequent incidence of radiogenic cancer. In this article, we evaluate evidence refuting the linear no-threshold model and corollary efforts to reduce radiation exposure from CT and nuclear medicine imaging in accord with the as-low-as-reasonablyachievable principle, particularly for children. Further, we review studies demonstrating that children are not, in fact, more radiosensitive than adults in the radiologic imaging dose range, rendering dose reduction for children unjustifiable and counterproductive. Efforts to minimize nonexistent risks are futile and a major source of persistent radiophobia. Radiophobia is detrimental to patients and parents, induces stress, and leads to suboptimal image quality and avoidance of imaging, thus increasing misdiagnoses and consequent harm while offering no compensating benefits.
The linear no-threshold (LNT) model for low-dose, radiogenic cancer has been a fixture of radiation protection and regulatory requirements for decades, but its validity has long been contested. This article finds, yet again, more questionable data and analyses purporting to support the model, this within the “gold-standard” data set for estimating radiation effects in humans. Herein is addressed a number of significant uncertainties in the Radiation Effects Research Foundation’s Life Span Study (LSS) cohort of atomic bomb survivors, especially in its latest update of 2017, showing that the study’s support of the LNT model is not evidence based. We find that its latest 2 analyses of solid cancer incidence ignore biology and do not support the LNT model. Additionally, we identify data inconsistencies and missing causalities in the LSS data and analyses that place reliance on uncertain, imputed data and apparently flawed modeling, further invalidating the LNT model. These observations lead to a most credible conclusion, one supporting a threshold model for the dose–response relationship between low-dose radiation exposure and radiogenic cancer in humans. Based upon these findings and those cited from others, it becomes apparent that the LNT model cannot be scientifically valid.
This paper examines the birthing process of the linear no-threshold model with respect to genetic effects and carcinogenesis. This model was conceived >70 years ago but still remains a foundational element within much of the scientific thought regarding exposure to low-dose ionizing radiation. This model is used today to provide risk estimates for cancer resulting from any exposure to ionizing radiation down to zero dose, risk estimates that are only theoretical and, as yet, have never been conclusively demonstrated by empirical evidence. We are literally bathed every second of every day in low-dose radiation exposure due to natural background radiation, exposures that vary annually from a few mGy to 260 mGy, depending upon where one lives on the planet. Irrespective of the level of background exposure to a given population, no associated health effects have been documented to date anywhere in the world. In fact, people in the United States are living longer today than ever before, likely due to always improving levels of medical care, including even more radiation exposure from diagnostic medical radiation (eg, x-ray and computed tomography imaging examinations) which are well within the background dose range across the globe. Yet, the persistent use of the linear no-threshold model for risk assessment by regulators and advisory bodies continues to drive an unfounded fear of any low-dose radiation exposure, as well as excessive expenditures on putative but unneeded and wasteful safety measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.