We present here a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters. The method, however, requires the input of a number of seeds, either individual pixels or regions, which will control the formation of regions into which the image will be segmented. In this correspondence, we present the algorithm, discuss briefly its properties, and suggest two ways in which it can be employed, namely, by using manual seed selection or by automated procedures.
A non-linear approach was more appropriate than QSPRs or SLNs for the analysis of the dataset employed herein, as the prediction and confidence values in the prediction given by the Gaussian process are better than with other methods examined. Gaussian process provides a novel way of analysing skin absorption data that is substantially more accurate, statistically robust and reflective of our empirical understanding of skin absorption than the QSPR methods so far applied to skin absorption.
A non-linear approach was more appropriate than QSPRs or SLNs for the analysis of the dataset employed herein, as the prediction and confidence values in the prediction given by the Gaussian process are better than with other methods examined. Gaussian process provides a novel way of analysing skin absorption data that is substantially more accurate, statistically robust and reflective of our empirical understanding of skin absorption than the QSPR methods so far applied to skin absorption.
The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
While the results of this study indicate that permeation across rodent (mouse and rat) and pig skin is, in a statistical sense, similar, and that the artificial membranes are poor replacements of human or animal skin, the overriding issue raised in this study is the nature of the dataset and how it can influence the results, and subsequent interpretation, of any model produced for particular membranes. The size of the datasets, in both absolute and comparative senses, appears to influence model quality. Ideally, to generate viable cross-comparisons the datasets for different mammalian membranes should, wherever possible, exhibit as much commonality as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.