We present here a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters. The method, however, requires the input of a number of seeds, either individual pixels or regions, which will control the formation of regions into which the image will be segmented. In this correspondence, we present the algorithm, discuss briefly its properties, and suggest two ways in which it can be employed, namely, by using manual seed selection or by automated procedures.
Author contributions DCJ coordinated all analyses, isolated DNA for sequencing, analysed and filtered SNP calls, conducted diversity analysis and GWAS and drafted the manuscript. CR produced phenotype data for growth on various solid media and growth rates in liquid media. AR conducted analysis of dating using mitochondrial data. DS conducted GWAS. MP analysed all phenotype data. TM identified LTR transposon insertions and analysed transposon insertion data. FXM conducted crosses for analysis of spore viability ZI produced indel calls with Cortex. WL conducted analysis of recombination rate, linkage disequilibrium decay and PCA for distance between strains. TMKC assisted with phenotype and population analysis. RP analysed Cortex and GATK indel calls. MM conducted amino acid profiling. JLDL and AC produced automated measures of cell morphology. SB aligned reads and produced GATK SNP calls. GH analysed population structure using fineSTRUCTURE. BO'F estimated the TMRCA from the nuclear genome using ACG. TK identified LTR transposon insertions JTS produced de novo assemblies. LB developed the custom Workspace workflow Spotsizer. BT assisted with sequence analysis. DAB assisted with analysis of novel genes. TS assisted with strain verification. SC produced images of wild strains and assisted with strain verification. JEEUH assisted with SNP validation. LvT and MT assisted with LTR validation. LJ and JL assisted with manual measures of cell morphology and FACS. SA produced gene expression data. MF, KM and ND assisted with sequencing. WB initiated and assisted with strain collection. JH coordinated manual measures of cell morphology and FACS. RECS coordinated automated measures of cell morphology. MR coordinated amino acid profiling. NM conducted analysis of recombination, linkage disequilibrium and advised on aspects of diversity and GWAS. DJB advised on GWAS. RD facilitated sequencing. JB contributed to the initiation and development of the project and financed the JB laboratory. AccessionsSequence data are archived in the European Nucleotide Archive (www.ebi.ac.uk/ena/), Study Accessions PRJEB2733 and PRJEB6284 (Supplementary Table 7). All SNPs and indels were submitted to NCBI dbSNP (www.ncbi.nlm.nih.gov/SNP/). Accessions are 974514578-974688138 (SNPs) and 974702618-974688139 (indels). Europe PMC Funders Group AbstractNatural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the utility of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, revealing moderate genetic diversity (π = 3 ×10 −3 ) and weak global population structure. We estimate that dispersal of S. pombe began within human antiquity (~340 BCE), and ancestors of these strains reached the Americas at ~1623 CE. We quantified 74 traits, revealing substantial heritable phenotypic diversity. We cond...
BackgroundMeasuring grain characteristics is an integral component of cereal breeding and research into genetic control of seed development. Measures such as thousand grain weight are fast, but do not give an indication of variation within a sample. Other methods exist for detailed analysis of grain size, but are generally costly and very low throughput. Grain colour analysis is generally difficult to perform with accuracy, and existing methods are expensive and involved.ResultsWe have developed a software method to measure grain size and colour from images captured with consumer level flatbed scanners, in a robust, standardised way. The accuracy and precision of the method have been demonstrated through screening wheat and Brachypodium distachyon populations for variation in size and colour.ConclusionBy using GrainScan, cheap and fast measurement of grain colour and size will enable plant research programs to gain deeper understanding of material, where limited or no information is currently available.
Patterns of restriction site variation within mitochondrial DNA (mtDNA) of 270 individuals were used to examine the current structure of savanna elephant populations and to infer historical patterns of gene flow across eastern and southern Africa. Elephants have a complex population structure characterized by marked subdivision at the continental level (Fst = 0.39; 95% confidence interval 0.19-0.58), and isolation by distance at the regional level. However, phylogeographic analysis revealed evidence of protracted gene flow across the continent. First, one relatively derived haplotype was found at all sampling locations. Second, haplotypes representing exceptionally divergent (up to 8.3%) mitochondrial clades were found to coexist at distant (> 2,000 km) sampling locations. In the few other species characterized by sympatric individuals bearing such divergent haplotypes, all such individuals were found to coexist within limited geographical regions. Accordingly, pronounced mitochondrial divergence within populations is often attributed to ancestral isolation in allopatry, followed by secondary contact. The patterns within elephants do not accord with ancestral isolation in allopatry. Given the exceptional mobility of elephants, a geographical barrier is unlikely to have obstructed gene flow between regions for long enough to produce the observed mitochondrial divergence. Rather, the patterns are consistent with the more parsimonious hypothesis, based on neutral coalescent theory, that gene flow has maintained a sufficiently large effective population size (> 50,000 females) for representatives of clades that diverged at least 4 million years ago to have persisted by chance within a population that was subdivided, but not strictly isolated in allopatry.
BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT activity and astrocytic morphology.EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA‐1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed changes in astrocytic morphology, F‐/G‐actin, and localizations of EAAT1/2.RESULTS Fasudil and Y27632 increased [3H]‐d‐aspartate (d‐Asp) uptake into astrocytes, and the action of Fasudil was time‐dependent and concentration‐related. The rapid stellation of astrocytes (glial fibrillary acidic protein immunocytochemistry) induced by Fasudil was accompanied by reduced phalloidin staining of F‐actin and increased Vmax for [3H]‐d‐Asp uptake. Immunoblotting after biotinylation demonstrated that Fasudil increased the expression of EAAT1 and EAAT2 on the cell surface. Immunocytochemistry indicated that Fasudil induced prominent labelling of astrocytic processes by EAAT1/2.CONCLUSION AND IMPLICATIONS These data show for the first time that ROCK plays a major role in determining the cell surface expression of EAAT1/2, providing new evidence for an association between transporter function and astrocytic phenotype. ROCK inhibitors, via the actin cytoskeleton, effect a consequent elevation of glutamate transporter function – this activity profile may contribute to their beneficial actions in neuropathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.