BackgroundHuman African trypanosomiasis (HAT) is an important public health problem in sub-Saharan Africa, affecting hundreds of thousands of individuals. An urgent need exists for the discovery and development of new, safe, and effective drugs to treat HAT, as existing therapies suffer from poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. We have discovered and optimized a novel class of small-molecule boron-containing compounds, benzoxaboroles, to identify SCYX-7158 as an effective, safe and orally active treatment for HAT.Methodology/Principal FindingsA drug discovery project employing integrated biological screening, medicinal chemistry and pharmacokinetic characterization identified SCYX-7158 as an optimized analog, as it is active in vitro against relevant strains of Trypanosoma brucei, including T. b. rhodesiense and T. b. gambiense, is efficacious in both stage 1 and stage 2 murine HAT models and has physicochemical and in vitro absorption, distribution, metabolism, elimination and toxicology (ADMET) properties consistent with the compound being orally available, metabolically stable and CNS permeable. In a murine stage 2 study, SCYX-7158 is effective orally at doses as low as 12.5 mg/kg (QD×7 days). In vivo pharmacokinetic characterization of SCYX-7158 demonstrates that the compound is highly bioavailable in rodents and non-human primates, has low intravenous plasma clearance and has a 24-h elimination half-life and a volume of distribution that indicate good tissue distribution. Most importantly, in rodents brain exposure of SCYX-7158 is high, with Cmax >10 µg/mL and AUC0–24 hr >100 µg*h/mL following a 25 mg/kg oral dose. Furthermore, SCYX-7158 readily distributes into cerebrospinal fluid to achieve therapeutically relevant concentrations in this compartment.Conclusions/SignificanceThe biological and pharmacokinetic properties of SCYX-7158 suggest that this compound will be efficacious and safe to treat stage 2 HAT. SCYX-7158 has been selected to enter preclinical studies, with expected progression to phase 1 clinical trials in 2011.
Relative to carbon, hydrogen, nitrogen and oxygen, very little is currently known about boron in therapeutics. In addition, there are very few boron-containing natural products identified to date to serve as leads for medicinal chemists. Perceived risks of using boron and lack of synthetic methods to handle boron-containing compounds have caused the medicinal chemistry community to shy away from using the atom. However, physical, chemical and biological properties of boron offer medicinal chemists a rare opportunity to explore and pioneer new areas of drug discovery. Boron therapeutics are emerging that show different modes of inhibition against a variety of biological targets. With one boron-containing therapeutic agent on the market and several more in various stages of clinical trials, the occurrence of this class of compound is likely to grow over the next decade and boron could become widely accepted as a useful element in future drug discovery.
The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.
(32), and treatment failures of up to 25% have been reported (12, 13). Difluoromethylornithine (DFMO) (Ornidyl) requires a 2-week therapy regimen which is difficult to administer in rural clinics (34). A new combination therapy with DFMO and oral nifurtimox (NECT) reduces the dose time to 1 week but still requires intravenous (i.v.) dosing (35).Antigenic variation is frequent, rendering prospects for vaccine development impracticable (22,27). What is urgently needed is a safe, orally (p.o.) administered drug, effective against both stages 1 and 2 of HAT, which then eliminates the need for staging and raises the potential for the eradication of sleeping sickness. Toward this aspiration, we have identified a class of boron-containing compounds, oxaborole carboxamides, as novel leads that show potent and selective trypanocidal activity in vitro. Two examples chosen from this lead series are AN3520 and SCYX-6759. These compounds exhibit rapid,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.