Recent study shows that the existing first order canonical timing model is not sufficient to represent the dependency of the gate delay on the variation sources when processing and operational variations become more and more significant. Due to the nonlinearity of the mapping from variation sources to the gate/wire delay, the distribution of the delay is no longer Gaussian even if the variation sources are normally distributed.A novel quadratic timing model is proposed to capture the non-linearity of the dependency of gate/wire delays and arrival times on the variation sources. Systematic methodology is also developed to evaluate the correlation and distribution of the quadratic timing model. Based on these, a novel statistical timing analysis algorithm is propose which retains the complete correlation information during timing analysis and has the same computation complexity as the algorithm based on the canonical timing model.Tested on the ISCAS circuits, the proposed algorithm shows 10× accuracy improvement over the existing first order algorithm while no significant extra runtime is needed.
In this paper, we propose preconditioned Krylov-subspace iterative methods to perform efficient DC and transient simulations for large-scale linear circuits with an emphasis on power delivery circuits. We also prove that a circuit with inductors can be simplified from MNA to NA format, and the matrix becomes an s.p.d matrix. This property makes it suitable for the conjugate gradient with incomplete Cholesky decomposition as the preconditioner, which is faster than other direct and iterative methods. Extensive experimental results on large-scale industrial power grid circuits show that our method is over 200 times faster for DC analysis and around 10 times faster for transient simulation compared to SPICE3. Furthermore, our algorithm reduces over 75% of memory usage than SPICE3 while the accuracy is not compromised.
Simultaneous gate-sizing with multiple Vt assignment for delay and power optimization is a complicated task in modern custom designs. In this work, we make the key contribution of a novel gate-sizing and multi-Vt assignment technique based on generalized Lagrangian Relaxation. Experimental results show that our technique exhibits linear runtime and memory usage, and can effectively tune circuits with over 15,000 variables and 8,000 constraints in under 8 minutes (250x faster than state-of-the-art optimization solvers).
Most of the existing statistical static timing analysis (SSTA) algorithms assume that the process parameters of have been given with 100% confidence level or zero errors and are preferable Gaussian distributions. These assumptions are actually quite questionable and require careful attention.In this paper, we aim at providing solid statistical analysis methods to analyze the measurement data on testing chips and extract the statistical distribution, either Gaussian or non-Gaussian which could be used in advanced SSTA algorithms for confidence interval or error bound information.Two contributions are achieved by this paper. First, we develop a moment matching based quadratic function modeling method to fit the first three moments of given measurement data in plain form which may not follow Gaussian distributions. Second, we provide a systematic way to analyze the confident intervals on our modeling strategies. The confidence intervals analysis gives the solid guidelines for testing chip data collections. Extensive experimental results demonstrate the accuracy of our algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.