In 21st-Century VLSI design, clocking plays crucial roles for both performance and timing convergence. Due to their non-convex nature, optimal minimum-delay/area zero-skew wire-sizing problems have long been considered intractable. None of the existing approaches can guarantee optimality for general clock trees to the authors' best knowledge. In this paper, we present an -optimal zero-skew wire-sizing algorithm, ClockTune, which guarantees zero-skew with delay and area within distance to the optimal solutions in pseudo-polynomial time. Extensive experimental results show that our algorithm executes very efficiently in both runtime and memory usage. For example, ClockTune takes less than two minutes and 35MB memory to size an industrial clock tree with 3101 sink nodes within 2% to the optimal solution on a 533MHz Pentium III PC. Our algorithm can also be used to achieve useful clock skew to facilitate timing convergence and to incrementally adjust clock tree for design convergence and explore delay/power tradeoffs during design cycles. ClockTune is available on the web [13].
Abstract-Dramatic rises in the power consumption and integration density of contemporary systems-on-chip (SoCs) have led to the need for careful attention to chip-level thermal integrity. High temperatures or uneven temperature distributions may result not only in reliability issues, but also timing failures, due to the temperature-dependent nature of chip time-to-failure and delay, respectively. To resolve these issues, high quality, accurate thermal modeling and analysis, and thermally-oriented placement optimizations, are essential prior to tapeout. This paper first presents an overview of thermal modeling and simulation methods such as finite-difference time domain, finite element, model reduction, random walk, and Green-function based algorithms, that are appropriate for use in placement algorithms. Next, 2D and 3D thermal-aware placement algorithms such as matrix-synthesis, simulated annealing, partition-driven, and force directed are presented. Finally, future trends and challenges are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.