Interleukin-1α (IL-1α) and IL-1β are potent inflammatory cytokines that activate local and systemic inflammatory processes and are involved in protective immune responses against infections. However, their dysregulated production and signaling can aggravate tissue damage during infection, inflammatory diseases, and chemotherapy-induced intestinal mucositis. Additionally, cytokines of the IL-1 family play an important role in homeostatic as well as "emergency" hematopoiesis and are involved in the pathogenesis of several myeloid and lymphoid hematological malignancies. In the pathogenesis of intestinal mucositis and graft-versus-host disease (GVHD), these cytokines are considered pivotal during the initiation as well as propagation phase, and insights from animal studies suggest that targeting the IL-1 pathway can significantly ameliorate mucositis and GVHD. Moreover, IL-1α and IL-1β might prove to be valuable targets for both prevention and treatment of cancer and cancer therapy-related complications, and the first clinical studies have already been performed in the setting of hematological malignancies. In this review, we will discuss the role of cytokines of the IL-1 family in hematological malignancies, chemotherapy-induced intestinal mucositis, and GVHD, and speculate on possibilities of therapeutically targeting the IL-1 pathway in hematological patients.
High-dose chemotherapy causes intestinal inflammation and subsequent breakdown of the mucosal barrier, permitting translocation of enteric pathogens, clinically manifesting as fever. Antibiotics are mainstay for controlling these complications, however, they are increasingly recognized for their detrimental effects, including antimicrobial resistance and dysbiosis. Here, we show that mucosal barrier injury induced by the mucotoxic chemotherapeutic agent, high-dose melphalan (HDM), is characterized by hyper-active IL-1b/CXCL1/neutrophil signaling. Inhibition of this pathway with IL-1RA, anakinra, minimized the duration and intensity of mucosal barrier injury and accompanying clinical symptoms, including diarrhea, weight loss and fever in rats. 16S analysis of fecal microbiome demonstrated a more stable composition in rats receiving anakinra, with reduced pathogen expansion. In parallel, we report through Phase IIA investigation that anakinra is safe in stem cell transplant patients with multiple myeloma after HDM. Ramping-up anakinra (100–300 mg administered intravenously for 15 days) did not cause any adverse events or dose limiting toxicities, nor did it change time to neutrophil recovery. Our results reinforce that strengthening the mucosal barrier may be an effective supportive care strategy to mitigate local and systemic clinical consequences of HDM. We are now conducting a Phase IIB multicenter, placebo-controlled, double-blinded trial to assess clinical efficacy of anakinra (AFFECT-2).Trial registration: ClinicalTrials.gov identifier: NCT03233776.
Purpose
Conditioning therapy with high-dose melphalan (HDM) is associated with a high risk of gut toxicity, fever and infections in haematopoietic stem cell transplant (HSCT) recipients. However, validated preclinical models that adequately reflect clinical features of melphalan-induced toxicity are not available. We therefore aimed to develop a novel preclinical model of melphalan-induced toxicity that reflected well-defined clinical dynamics, as well as to identify targetable mechanisms that drive intestinal injury.
Methods
Male Wistar rats were treated with 4–8 mg/kg melphalan intravenously. The primary endpoint was plasma citrulline. Secondary endpoints included survival, weight loss, diarrhea, food/water intake, histopathology, body temperature, microbiota composition (16S sequencing) and bacterial translocation.
Results
Melphalan 5 mg/kg caused self-limiting intestinal injury, severe neutropenia and fever while impairing the microbial metabolome, prompting expansion of enteric pathogens. Intestinal inflammation was characterized by infiltration of polymorphic nuclear cells in the acute phases of mucosal injury, driving derangement of intestinal architecture. Ileal atrophy prevented bile acid reabsorption, exacerbating colonic injury via microbiota-dependent mechanisms.
Conclusion
We developed a novel translational model of melphalan-induced toxicity, which has excellent homology with the well-known clinical features of HDM transplantation. Application of this model will accelerate fundamental and translational study of melphalan-induced toxicity, with the clinical parallels of this model ensuring a greater likelihood of clinical success.
Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.