Contents
Summary655I.Definitions of stress656II.The seed life cycle revisited in view of the eustress–distress concept657III.Common denominators of many stresses: reactive oxygen and nitrogen species660IV.Alarm662V.Resistance664VI.Exhaustion666VII.Conclusions667Acknowledgements669References669
Summary
‘Stresses’ that impact upon seeds can affect plant reproduction and productivity, and, hence, agriculture and biodiversity. In the absence of a clear definition of plant stress, we relate concepts from physics, medicine and psychology to stresses that are specific to seeds. Potential ‘eustresses’ that enhance function and ‘distresses’ that have harmful effects are considered in relation to the seed life cycle. Taking a triphasic biomedical stress concept published in 1936, the ‘General Adaptation Syndrome’, to the molecular level, the ‘alarm’ response is defined by post‐translational modifications and stress signalling through cross‐talk between reactive oxygen and nitrogen species, and seed hormones, that result in modifications to the transcriptome. Protection, repair, acclimation and adaptation are viewed as the ‘building blocks’ of the ‘resistance’ response, which, in seeds, are the basis for their longevity over centuries. When protection and repair mechanisms eventually fail, depending on dose and time of exposure to stress, cell death and, ultimately, seed death are the result, corresponding to ‘exhaustion’. This proposed seed stress concept may have wider applicability to plants in general.
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background.
The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.