The ability of crop seeds to retain their viability over extended periods of uncontrolled temperature and/or relative humidity conditions has not been widely investigated, although this is an important issue for genebank management. We report here the response of 18 crop species to storage for up to 26 years at 20.3 ± 2.3°C and 50.5 ± 6.3% relative humidity. Germination rates decreased in a sigmoid fashion, but the curve parameters were species characteristic. Pea, common bean and maize seeds retained their viability over the longest period (23, 21 and 19 years, respectively). In contrast, chive seeds survived for only 5 years and lettuce for 7 years. In addition to this interspecific variability, there were also indices for intraspecific variability, particularly in bean and chive seeds, just as in collard, lupin, poppy, wheat and maize seeds. A significant correlation was obtained between germination performance in the laboratory and seedling emergence following autumn sowing. Seeds in which oil was the major seed storage component were more short lived, whereas carbohydrates or proteins did not show an effect on seed longevity.
The conservation of crop genetic resources, including their wild relatives, is of utmost importance for the future of mankind. Most crops produce orthodox seeds and can, therefore, be stored in seed genebanks. However, this is not an option for crops and species that produce recalcitrant (non-storable) seeds such as cacao, coffee and avocado, for crops that do not produce seeds at all; therefore, they are inevitably vegetatively propagated such as bananas, or crops that are predominantly clonally propagated as their seeds are not true to type, such as potato, cassava and many fruit trees. Field, in vitro and cryopreserved collections provide an alternative in such cases. In this paper, an overview is given on how to manage and setup a field, in vitro and cryopreserved collections, as well as advantages and associated problems taking into account the practical, financial and safety issues in the long-term. In addition, the need for identification of unique accessions and elimination of duplicates is discussed. The different conservation methods are illustrated with practical examples and experiences from national and international genebanks. Finally, the importance of establishing safe and long-term conservation methods and associated backup possibilities is highlighted in the frame of the global COVID-19 pandemic.
Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background.
Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs.
Wheat sheds tricellular short-lived pollen at maturity. The identification of viable pollen required for high seed set is important for breeders and conservators. The present study aims to evaluate and improve pollen viability tests and to identify factors influencing viability of pollen. In fresh wheat pollen, sucrose was the most abundant soluble sugar (90%). Raffinose was present in minor amounts. However, the analyses of pollen tube growth on 112 liquid and 45 solid media revealed that solid medium with 594 mM raffinose, 0.81 mM H 3 BO 3 , 2.04 mM CaCl 2 at pH5.8 showed highest pollen germination. Partly or complete substitution of raffinose by sucrose, maltose, or sorbitol reduced in vitro germination of the pollen assuming a higher metabolic efficiency or antioxidant activity of raffinose. In vitro pollen germination varied between 26 lines (P < 0.001); between winter (15.3 ± 8.5%) and spring types (30.2 ± 13.3%) and was highest for the spring wheat TRI 2443 (50.1 ± 20.0%). Alexander staining failed to discriminate between viable, fresh pollen, and non-viable pollen inactivated by ambient storage for >60 min. Viability of fresh wheat pollen assessed by fluorescein diacetate (FDA) staining and impedance flow (IF) cytometry was 79.2 ± 4.2% and 88.1 ± 2.7%, respectively; and, when non-viable, stored pollen was additionally tested, it correlated at r = 0.54 (P < 0.05) and r = 0.67 (P < 0.001) with in vitro germination, respectively. When fresh pollen was used to assess the pollen viability of 19 wheat, 25 rye, 11 barley, and 4 maize lines, correlations were absent and in vitro germination was lower for rye (11.7 ± 8.5%), barley (6.8 ± 4.3%), and maize (2.1 ± 1.8%) pollen compared to wheat. Concluding, FDA staining and IF cytometry are used for a range of pollen species, whereas media for in vitro pollen germination require specific adaptations; in wheat, a solid medium with raffinose was chosen. On adapted media, the pollen tube growth can be exactly analyzed whereas results achieved by FDA staining and IF cytometry are higher and may overestimate pollen tube growth. Hence, as the exact viability and fertilization potential of a larger pollen batch remains elusive, a combination of pollen viability tests may provide reasonable indications of the ability of pollen to germinate and grow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.