Despite being a natural soil-forming process, soil acidification is a major agronomic challenge under humid climate conditions, as soil acidity influences several yield-relevant soil properties. It can be counterbalanced by the regular application of agricultural lime to maintain or re-establish soil fertility and to optimize plant growth and yield. To avoid underdose as well as overdose, lime rates need to be calculated carefully. The lime rate should be determined by the optimum soil pH (target pH) and the response of the soil to lime, which is described by the base neutralizing capacity (BNC). Several methods exist to determine the lime requirement (LR) to raise the soil pH to its optimum. They range from extremely time-consuming equilibration methods, which mimic the natural processes in the soil, to quick tests, which rely on some approximations and are designed to provide farmers with timely and cost-efficient data. Due to the higher analytical efforts, only limited information is available on the real BNC of particular soils. In the present paper, we report the BNC of 420 topsoil samples from Central Europe (north-east Germany), developed on sediments from the last ice age 10,000 years ago under Holocene conditions. These soils are predominantly sandy and low in humus, but they exhibit a huge spatial variability in soil properties on a small scale. The BNC was determined by adding various concentrations of Ca(OH)2 and fitting an exponential model to derive a titration curve for each sample. The coefficients of the BNC titration curve were well correlated with soil properties affecting soil acidity and pH buffer capacity, i.e., pH, soil texture and soil organic matter (SOM). From the BNC model, the LRs (LRBNC) were derived and compared with LRVDLUFA based on the standard protocol in Germany as established by the Association of German Agricultural Analytic and Research Institutes (VDLUFA). The LRBNC and LRVDLUFA correlated well but the LRVDLUFA were generally by approximately one order of magnitude higher. This is partly due to the VDLUFA concept to recommend a maintenance or conservation liming, even though the pH value is in the optimum range, to keep it there until the next lime application during the following rotation. Furthermore, the VDLUFA method was primarily developed from field experiments where natural soil acidification and management practices depressed the effect of lime treatment. The BNC method, on the other hand, is solely based on laboratory analysis with standardized soil samples. This indicates the demand for further research to develop a sound scientific algorithm that complements LRBNC with realistic values of annual Ca2+ removal and acidification by natural processes and N fertilization.
Soil acidification is caused by natural paedogenetic processes and anthropogenic impacts but can be counteracted by regular lime application. Although sensors and applicators for variable-rate liming (VRL) exist, there are no established strategies for using these tools or helping to implement VRL in practice. Therefore, this study aimed to provide guidelines for site-specific liming based on proximal soil sensing. First, high-resolution soil maps of the liming-relevant indicators (pH, soil texture and soil organic matter content) were generated using on-the-go sensors. The soil acidity was predicted by two ion-selective antimony electrodes (RMSEpH: 0.37); the soil texture was predicted by a combination of apparent electrical resistivity measurements and natural soil-borne gamma emissions (RMSEclay: 0.046 kg kg−1); and the soil organic matter (SOM) status was predicted by a combination of red (660 nm) and near-infrared (NIR, 970 nm) optical reflection measurements (RMSESOM: 6.4 g kg−1). Second, to address the high within-field soil variability (pH varied by 2.9 units, clay content by 0.44 kg kg−1 and SOM by 5.5 g kg−1), a well-established empirical lime recommendation algorithm that represents the best management practices for liming in Germany was adapted, and the lime requirements (LRs) were determined. The generated workflow was applied to a 25.6 ha test field in north-eastern Germany, and the variable LR was compared to the conventional uniform LR. The comparison showed that under the uniform liming approach, 63% of the field would be over-fertilized by approximately 12 t of lime, 6% would receive approximately 6 t too little lime and 31% would still be adequately limed.
Liming agricultural fields is necessary for counteracting soil acidity and is one of the oldest operations in soil fertility management. However, the best management practice for liming in Germany only insufficiently considers within-field soil variability. Thus, a site-specific variable rate liming strategy was developed and tested on nine agricultural fields in a quaternary landscape of north-east Germany. It is based on the use of a proximal soil sensing module using potentiometric, geoelectric and optical sensors that have been found to be proxies for soil pH, texture and soil organic matter (SOM), which are the most relevant lime requirement (LR) affecting soil parameters. These were compared to laboratory LR analysis of reference soil samples using the soil’s base neutralizing capacity (BNC). Sensor data fusion utilizing stepwise multi-variate linear regression (MLR) analysis was used to predict BNC-based LR (LRBNC) for each field. The MLR models achieved high adjusted R2 values between 0.70 and 0.91 and low RMSE values from 65 to 204 kg CaCO3 ha−1. In comparison to univariate modeling, MLR models improved prediction by 3 to 27% with 9% improvement on average. The relative importance of covariates in the field-specific prediction models were quantified by computing standardized regression coefficients (SRC). The importance of covariates varied between fields, which emphasizes the necessity of a field-specific calibration of proximal sensor data. However, soil pH was the most important parameter for LR determination of the soils studied. Geostatistical semivariance analysis revealed differences between fields in the spatial variability of LRBNC. The sill-to-range ratio (SRR) was used to quantify and compare spatial LRBNC variability of the nine test fields. Finally, high resolution LR maps were generated. The BNC-based LR method also produces negative LR values for soil samples with pH values above which lime is required. Hence, the LR maps additionally provide an estimate on the quantity of chemically acidifying fertilizers that can be applied to obtain an optimal soil pH value.
Detailed knowledge of a soil’s lime requirement (LR) is a prerequisite for a demand-based lime fertilization to achieve the optimum soil pH and thus sustainably increasing soil fertility and crop yields. LR can be directly determined by the base neutralizing capacity (BNC) obtained by soil-base titration. For a site-specific soil acidity management, detailed information on the within-field variation of BNC is required. However, soil-base titrations for BNC determination are too laborious to be extensively applied in routine soil testing. In contrast, visible and near-infrared spectroscopy (visNIRS) is a time and cost-effective alternative that can analyze several soil characteristics within a single spectrum. VisNIRS was tested in the laboratory on 170 air-dried and sieved soil samples of nine agricultural fields of a quaternary landscape in North-east Germany predicting the soil’s BNC and the corresponding lime requirement (LRBNC) at a target pH of 6.5. Seven spectral pre-processing methods were tested including a new technique based on normalized differences (ND). Furthermore, six multivariate regression methods were conducted including a new method combining a forward stagewise subset selection algorithm with PLSR (FS-PLSR). The models were validated using an independent sample set. The best regression model for most target variables was FS-PLSR combined with the second Savitzky-Golay derivation as pre-processing method achieving R2s from 0.68 to 0.82. Finally, the performance of the direct prediction of LRBNC (R2 = 0.68) was compared with an indirect prediction that was calculated by the predicted BNC parameters. This resulted in slightly higher correlation coefficients for the indirect method with R2 = 0.75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.