The firing of mesolimbic dopamine neurons is important for druginduced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca 2+ -dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 −/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 −/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive-delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.I A current | neuroimaging genetic reward-anticipation preference T he reinforcing properties of addictive drugs are dependent on the activity of mesolimbic dopamine (DA) neurons in the ventral tegmental area (VTA) and their projections to the ventral striatum (VS) and prefrontal cortex (PFC) (1). Microdialysis studies using rodent models have shown that acute administration of addictive drugs, including alcohol, results in elevated DA levels in the VS (2). This effect results from local inhibition of DA reuptake, stimulation of its release, or an increase in firing rate of DA neurons in the VTA (3-5). PET studies have shown a similar effect in the VS of humans as evidenced by decreased competitive binding of a DA receptor antagonist [ 11 C] raclopride (6, 7). Illustrating the importance of DA signaling in the regulation of alcohol-induced reinforcement, rats are known to self-administer ethanol in the nucleus accumbens (8) and posterior VTA (9). These studies and other animal studies suggest that midbrain DA neurons are involved in the acquisition of primary alcohol reinforcement (review in ref. 1).Although the neurobiological and molecular mechanisms controlling DA neuron activity by different ...
Novelty-seeking tendencies in adolescents may promote innovation as well as problematic impulsive behaviour, including drug abuse. Previous research has not clarified whether neural hyper- or hypo-responsiveness to anticipated rewards promotes vulnerability in these individuals. Here we use a longitudinal design to track 144 novelty-seeking adolescents at age 14 and 16 to determine whether neural activity in response to anticipated rewards predicts problematic drug use. We find that diminished BOLD activity in mesolimbic (ventral striatal and midbrain) and prefrontal cortical (dorsolateral prefrontal cortex) regions during reward anticipation at age 14 predicts problematic drug use at age 16. Lower psychometric conscientiousness and steeper discounting of future rewards at age 14 also predicts problematic drug use at age 16, but the neural responses independently predict more variance than psychometric measures. Together, these findings suggest that diminished neural responses to anticipated rewards in novelty-seeking adolescents may increase vulnerability to future problematic drug use.
Objective The genetic component of alcohol use disorder is substantial, but monozygotic twin discordance indicates a role for nonheritable differences that could be mediated by epigenetics. Despite growing evidence associating epigenetics and psychiatric disorders, it is unclear how epigenetics, particularly DNA methylation, relate to brain function and behavior, including drinking behavior. Method The authors carried out a genome-wide analysis of DNA methylation of 18 monozygotic twin pairs discordant for alcohol use disorder and validated differentially methylated regions. After validation, the authors characterized these differentially methylated regions using personality trait assessment and functional MRI in a sample of 499 adolescents. Results Hypermethylation in the 3′-protein-phosphatase-1G (PPM1G) gene locus was associated with alcohol use disorder. The authors found association of PPM1G hypermethylation with early escalation of alcohol use and increased impulsiveness. They also observed association of PPM1G hypermethylation with increased blood-oxygen-level-dependent response in the right subthalamic nucleus during an impulsiveness task. Conclusions Overall, the authors provide first evidence for an epigenetic marker associated with alcohol consumption and its underlying neurobehavioral phenotype.
Depending on MAOA genotype, ADHD symptoms in adolescent boys are associated with either reward deficiency or insufficient response inhibition. Apart from its mechanistic interest, our finding may aid in developing pharmacogenetic markers for ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.