Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
Prenatal diagnosis (PND) is offered routinely as part of pregnancy care to a large number of women at increased risk of fetal anomalies. Despite an extraordinary growth in the use of PND and significant resource allocation, few studies have examined outcomes of PND counseling, and virtually no research has evaluated the relative efficacy of various approaches to genetic counseling. This study was a randomized trial that compared which counseling methods - individual, group, and use of a decision aid - are effective in PND counseling for women of advanced maternal age (>/=35 years) and their partners. Three hundred and fifty-two women and 225 partners completed pre- and post-intervention questionnaires assessing changes in knowledge, decisional conflict, state anxiety, satisfaction, use of PND, and pregnancy outcomes. All participants showed a significant increase in knowledge and a decrease in decisional conflict post intervention. Those in the group intervention showed a significantly greater increase in knowledge than those in the individual counseling intervention. While high levels of satisfaction were reported by all, those in individual counseling were significantly more satisfied than those receiving group counseling or the decision aid. This study has shown unique benefits with each type of intervention such that women and their partners preferred individual genetic counseling, while they learned best in group-counseling sessions, and experienced the least decisional conflict regarding genetic testing with a decision aid.
Although the International Code of Nomenclature of Bacteria does not specify a working strategy, editors and reviewers of taxonomic journals commonly request a polyphasic taxonomic approach that includes phenotypic, genotypic and chemotaxonomic information for the description of novel bacterial species. Whole genome sequences provide an insight into the genetic nature of microbial species, yield new and superior tools for delineating bacterial species and for studying their phylogeny, and provide a window on an organism's metabolic potential. These new insights and tools are gradually introduced in the polyphasic taxonomic practice. The genus Burkholderia, a controversial group of bacteria with both benign and devastating characteristics, is used as an example to show that the modern practice of polyphasic taxonomy is counterproductive in light of the tremendous number of bacterial species that awaits formal description and naming. Bacterial taxonomists must urgently reconsider how to describe and name novel bacteria in the genomic era, and should consider using a full genome sequence and a minimal description of phenotypic characteristics as a basic, sufficient, cost-effective and appropriate biological identity card for a species description.
Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia. They represented two multi-locus sequence analysis-based clusters, referred to as Bcc B and Boo L. Three additional environmental and clinical Bcc B isolates were identified upon deposition of the sequences in the PubMLST database. Analysis of the concatenated nucleotide sequence divergence levels within both groups (1.4 and 1.9%, respectively) and towards established Bcc species (4.0 and 3.9%, respectively) demonstrated that the two taxa represented novel Bcc species. All 12 isolates were further characterized using 16S rRNA and recA gene sequence analysis, RAPD analysis, DNA base content determination, fatty acid methyl ester analysis and biochemical profiling. Analysis of recA gene sequences revealed a remarkable diversity within each of these taxa, but, together, the results supported the affiliation of the two taxa to the Bcc. Bcc B strains can be differentiated from most other Bcc members by the assimilation of maltose. Bcc L strains can be differentiated from other Bcc members by the absence of assimilation of N-acetylglucosamine. The names Burkholderia stagnalis sp. nov. with type strain LMG 28156(T) (=CCUG 65686(T)) and Burkholderia territorii sp. nov. with type strain LMG 28158(T) (=CCUG 65687(T)) are proposed for Bcc B and Bcc L bacteria, respectively
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.