Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
The objective of the present study was to provide an updated classification for Burkholderia cepacia complex (Bcc) taxon K isolates. A representative set of 39 taxon K isolates were analyzed through multilocus sequence typing (MLST) and phylogenomic analyses. MLST analysis revealed the presence of at least six clusters of sequence types (STs) within taxon K, two of which contain the type strains of Burkholderia contaminans (ST-102) and Burkholderia lata (ST-101), and four corresponding to the previously defined taxa Other Bcc groups C, G, H and M. This clustering was largely supported by a phylogenomic tree which revealed three main clades. Isolates of B. contaminans and of Other Bcc groups C, G, and H represented a first clade which generally shared average nucleotide identity (ANI) and average digital DNA-DNA hybridization (dDDH) values at or above the 95-96% ANI and 70% dDDH thresholds for species delineation. A second clade consisted of Other Bcc group M bacteria and of four B. lata isolates and was supported by average ANI and dDDH values of 97.2 and 76.1% within this clade and average ANI and dDDH values of 94.5 and 57.2% toward the remaining B. lata isolates (including the type strain), which represented a third clade. We therefore concluded that isolates known as Other Bcc groups C, G, and H should be classified as B. contaminans, and propose a novel species, Burkholderia aenigmatica sp. nov., to accommodate Other Bcc M and B. lata ST-98, ST-103, and ST-119 isolates. Optimized MALDI-TOF MS databases for the identification of clinical Burkholderia isolates may provide correct species-level identification for some of these bacteria but would identify most of them as B. cepacia complex. MLST facilitates species-level identification of many taxon K strains but some may require comparative genomics for accurate species-level assignment. Finally, the inclusion of Other Bcc groups C, G, and H into B. contaminans affects the phenotype of this species minimally and the proposal to classify Other Bcc group M and B. lata ST-98, ST-103, and ST-119 strains as a novel Burkholderia species is supported by a distinctive phenotype, i.e., growth at 42 • C and lysine decarboxylase activity.
Background Postoperative endophthalmitis is a rare but dreaded complication of intraocular surgery and often results in severe visual impairment or blindness. The present study describes the clinical course, treatment and visual outcome of an outbreak of Burkholderia contaminans endophthalmitis following cataract surgery. Methods Among 290 patients who underwent uneventful phacoemulsification cataract surgery at one outpatient clinic between January 4th and 28th 2019, 6 cases developed Burkholderia contaminans endophthalmitis. Clinical data were collected by retrospective review of patient records. Microbiological samples from vitreous aspirates, intraocular lenses (IOL) and lens capsules were cultured, and recA and draft whole genome sequences analysed. Results The recA sequences of all Burkholderia contaminans isolates and the allelic profile of the isolates were identical. All cases had a similar clinical presentation with rapid development of endophthalmitis symptoms with variable time to onset. The mean time to admission was 34 days (12–112 days). All cases had a seemingly favourable response to intravitreal antibiotics. However, acute recurrences occurred after long time periods (12–71 days). The cases experienced between 0 and 3 recurrences. Due to persistent infection, the cases received between 5 and 15 treatments (mean 7.8) including IOL and lens capsule explantation in 5 of 6 cases. Burkholderia contaminans was detected in all explanted lens capsules. The final corrected distance visual acuity (CDVA, Snellen chart) was between 0.8 and 1.2 and all cases had final CDVA ≥0.8. Conclusions A persistent and intensive treatment approach including total lens capsule and IOL explantation is recommended for Burkholderia contaminans endophthalmitis following cataract surgery and may lead to a favourable visual result.
The use of Bcc isolation media yielded a surprisingly wide array of rare but often clinically relevant CF pathogens, confirming that soil and water are reservoirs of these infectious agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.