Highlights d NK cells drive broad inflammatory remodeling characteristic of T-cell-inflamed tumors d PGE2 acting on EP2 and EP4 on NK cells prevents the TME switch enabling immune escape d Opposing inflammatory profiles found in many human cancer types have prognostic value d A signature capturing pro-and anti-tumor factors predicts response to immunotherapy
Identifying strategies to improve the efficacy of immune checkpoint blockade (ICB) remains a major clinical need. Here, we show that therapeutically targeting the COX-2/PGE 2 /EP2-4 pathway with widely used non-steroidal and steroidal antiinflammatory drugs synergized with ICB in mouse cancer models. We exploited a bilateral surgery model to distinguish responders from non-responders shortly following treatment and identified acute IFN-γ-driven transcriptional remodeling in responder mice, which was also associated with patient benefit to ICB. Monotherapy with COX-2 inhibitors or EP2-4 PGE 2 receptor antagonists rapidly induced this response program and, in combination with ICB, increased the intratumoral accumulation of effector T cells. Treatment of patient-derived tumor fragments from multiple cancer types revealed a similar shift in the tumor inflammatory environment to favor T cell activation. Our findings establish the COX-2/PGE 2 /EP2-4 axis as an independent immune checkpoint and a readily translatable strategy to rapidly switch the tumor inflammatory profile from cold to hot.
Cytotoxic therapies, besides directly inducing cancer cell death, can stimulate immune-dependent tumor growth control or paradoxically accelerate tumor progression. The underlying mechanisms dictating these opposing outcomes are poorly defined. Here, we show that cytotoxic therapy acutely upregulates cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) production in cancer cells with pre-existing COX-2 activity. Screening a compound library of 1280 approved drugs, we find that all classes of chemotherapy drugs enhance COX-2 transcription whilst arresting cancer cell proliferation. Genetic manipulation of COX-2 expression or its gene promoter region uncover how augmented COX-2/PGE2 activity post-treatment profoundly alters the inflammatory properties of chemotherapy-treated cancer cells in vivo. Pharmacological COX-2 inhibition boosts the efficacy of the combination of chemotherapy and PD-1 blockade. Crucially, in a poorly immunogenic breast cancer model, only the triple therapy unleashes tumor growth control and significantly reduces relapse and spontaneous metastatic spread in an adjuvant setting. Our findings suggest COX-2/PGE2 upregulation by dying cancer cells acts as a major barrier to cytotoxic therapy-driven tumor immunity and uncover a strategy to improve the outcomes of immunotherapy and chemotherapy combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.