Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as ‘a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care’. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities.
IntroductionRadiation therapy (RT), like many allied health professions, has lacked professional practice clarity, which until 2008 had not been comprehensively investigated. This manuscript describes the first phase of a three‐phase project investigating the current and future practices of radiation therapists (RTs) in Australia. The aim of phase 1 was to define the practice of RTs in Australia.MethodsA quantitative approach was used to gain an understanding of RT practice. A national survey was distributed to RTs in Australia. Descriptive statistics and content analysis were used to analyse the data. RT practice was analysed in relation to core and non‐core roles, where non‐core roles were further divided into basic and advanced practices.ResultsThe data from the national survey were representative of the Australian RT population (n = 525). The current practice of RTs is presented in summary tables for each area of work (treatment, planning, simulation, mould room and general).ConclusionThis study provided clarification of RT practice and indicated there was a desire to relinquish administrative roles to focus on RT–specific practice. There was evidence that some advanced roles were currently practiced in Australia; however, there was no structure to support these roles and they were based only on local need. This study identified that the profession needs to consider how they will maintain core RT practice, while encouraging the development of new roles, and whether some roles need to be relinquished.
Single- and double-arc VMAT consistently resulted in favourable or slightly superior dosimetry when compared with static gantry IMRT for prostate cases. Both the VMAT techniques and static gantry IMRT resulted in superior critical tissue sparing when compared with conformal plans.
IntroductionRadiotherapy management of patients with brain metastases most commonly involve a whole-brain radiation therapy (WBRT) regime, as well as newer techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). The long treatment times incurred by these techniques indicates the need for a novel technique that has shorter treatment times, whilst still producing highly conformal treatment with the potential to deliver escalated doses to the target area. Volumetric modulated arc therapy (VMAT) is a dynamic, highly conformal technique that may deliver high doses of radiation through a single gantry arc and reduce overall treatment times. The aim of this systematic review is to determine the feasibility and benefits of VMAT treatment in regard to overall survival rates and local control in patients with brain metastases, in comparison with patients treated with WBRT, SRS and IMRT.MethodsA search of the literature identified 23 articles for the purpose of this review. Articles were included on the basis they were human-based studies, with sample sizes of more than five patients who were receiving treatment for 1–10 metastatic brain lesions.ResultsVMAT was found to be highly conformal, have a reduced treatment delivery time and incurred no significant toxicities in comparison with WBRT, SRS and IMRT.ConclusionCompared to other treatment techniques, VMAT proved to have fewer toxicities than conventional WBRT, shorter treatment times than SRS and similar dose distributions to IMRT plans. Future prospective studies are needed to accurately assess the prognostic benefits of VMAT as well as the occurrence of late toxicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.