We report an 8 × 8 silicon photonic integrated Arrayed Waveguide Grating Router (AWGR) targeted for WDM routing applications in O-band. The AWGR was designed for cyclic-frequency operation with a channel spacing of 10 nm. The fabricated AWGR exhibits a compact footprint of 700 × 270 μm. Static device characterization revealed 3.545 dB maximum channel loss non-uniformity with 2.5 dB best-case channel insertion losses and 11 dB channel crosstalk, in good agreement with the simulated results. Successful data routing operation is demonstrated with 25 Gb/s signals for all 8 × 8 AWGR port combinations with a maximum power penalty of 2.45 dB.
Analog fronthauling is currently promoted as a bandwidth and energy-efficient solution that can meet the requirements of the Fifth Generation (5G) vision for low latency, high data rates and energy efficiency. In this paper, we propose an analog optical fronthaul 5G architecture, fully aligned with the emerging Centralized-Radio Access Network (C-RAN) concept. The proposed architecture exploits the wavelength division multiplexing (WDM) technique and multicarrier intermediate-frequency-over-fiber (IFoF) signal generation per wavelength in order to satisfy the demanding needs of hotspot areas. Particularly, the fronthaul link employs photonic integrated circuit (PIC)-based WDM optical transmitters (Txs) at the baseband unit (BBU), while novel reconfigurable optical add-drop multiplexers (ROADMs) cascaded in an optical bus are used at the remote radio head (RRH) site, to facilitate reconfigurable wavelength switching functionalities up to 4 wavelengths. An aggregate capacity of 96 Gb/s has been reported by exploiting two WDM links carrying multi-IF band orthogonal frequency division multiplexing (OFDM) signals at a baud rate of 0.5 Gbd with sub-carrier (SC) modulation of 64-QAM. All signals exhibited error vector magnitude (EVM) values within the acceptable 3rd Generation Partnership Project (3GPP) limits of 8%. The longest reach to place the BBU away from the hotspot was also investigated, revealing acceptable EVM performance for fiber lengths up to 4.8 km.
Arrayed Waveguide Grating Router (AWGR)based interconnections for Multi-Socket Server Boards (MSBs) have been identified as a promising solution to replace the electrical interconnects in glueless MSBs towards boosting processing performance. In this paper, we present an 8-socket glueless optical flat-topology Wavelength Division Multiplexing (WDM)-based point-to-point (P2P) interconnect pursued within the H2020 ICT project ICT-STREAMS and we report on our latest achievements in the deployment of the constituent silicon (Si)-photonic transmitter and routing building blocks, exploiting experimentally obtained performance metrics for analyzing the 8-socket chip-to-chip (C2C) connectivity in terms of throughput and energy efficiency. We demonstrate an 8-channel WDM Siphotonic microring-based transmitter (Tx) capable of providing 400 (8×50) Gb/s non-return-to-zero (NRZ) Tx capacity and an 8×8 Coarse-WDM (CWDM) Si-AWGR with verified cyclic data routing capability in O-band. Following an overview of our recently demonstrated crosstalk (XT)-aware wavelength allocation scheme, that enables fully-loaded AWGR-based interconnects even for typical sub-optimal XT values of silicon integrated CWDM AWGRs, we validate the performance of a full-scale 8-socket interconnect architecture through physical layer simulations exploiting experimentally-verified simulation models for the underlying Si-photonic Tx and routing circuits. This analysis reveals a total aggregate capacity of 1.4 Tb/s for an 8-socket interconnect when operating with 25 Gb/s line-rates, which can scale to 2.8 Tb/s at an energy efficiency of just 5.02 pJ/bit by exploiting the experimentally verified building block performance at 50 Gb/s line. This highlights the perspectives for up to 69% energy savings compared to the standard QuickPath Interconnect (QPI) typically employed in electronic glueless MSB interconnects, while scaling the singlehop flat connectivity from 4-to 8-socket interconnection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.