Background: The estimation of genetic diversity in pigeonpea is crucial for desiging breeding programmes and germplasm conservation. Morphological studies alone do not provide sufficient information to understand genetic diversity. Molecular analysis using SSRs can provide additional information on genetic diversity that can be used for selection of diverse parents.
Methods: The experimental material for present study consisted of 50 diverse genotypes of pigeonpea. The fifty genotypes were planted in Randomized Complete Block Design consisted of three replications during the kharif 2020-21. The estimation of morphological genetic diversity was done by Mahalanobis D2 statistics. The molecular genetic diversity analysis was done by using 30 molecular markers in same genotypes.
Result: The assessment of morphological diversity revealed that the fifty pigeonpea genotypes were grouped into four different clusters with cluster I as the largest cluster (33 genotypes). The molecular markers differentiated the 50 genotypes in five major clusters with cluster II as the largest cluster (24 genotypes). The results of present study suggested that morphological and molecular diversity in pigeonpea is different. On the basis of genetic distance, the genotypes RVSA 2014-1 and PA 406 were found most genetically distant and may be used in hybridization programme to create diverse progenies.
Background: The development of Fusarium wilt resistant varieties is a major challenge in pigeonpea breeding and need to be addressed on priority basis. In this study, efforts had been made to characterize the elite pigeonpea genotypes for Fusarium wilt resistance at morphological and molecular level.
Methods: The present study was undertaken during kharif season of year 2018-19 at NEB, Crop Research Centre, G.B.P.U.A and T, Pantnagar. The experimental materials for present study consisted of 15 elite pigeonpea genotypes and three commercially grown popular varieties as checks. The molecular analysis was conducted during year 2019-20 and a susceptible variety BAHAR was used as check. The nine yield based indices were used for morphological analysis. The molecular analysis was carried out by using five already reported Fusarium wilt linked SSR markers.
Result: The results revealed that the marker ASSR 363, ASSR 366, ASSR 1, ASSR 23 and ASSR 148 were highly effective in differentiating the resistant and susceptible genotypes of pigeonpea for wilt disease. On the basis of morphological and molecular studies, it was concluded that the genotype PA 626 was the most superior genotype as it not only yielded higher than all the three checks but also shown resistance against wilt at both phenotypic and genotypic level.
Background: In pigeonpea, very less information is available on the interrelationship between combining ability, parental genetic diversity and heterosis. Methods: The experiment was conducted using randomized block design during kharif 2017-18 at GBPUAT, Pantnagar with 36 genotypes (8 parents and 28 F1 hybrids). The combining ability was estimated by using the Griffing’s, Method II, Model I. The genetic diversity (GD) was estimated by using the D2 statistics. The correlation between heterosis and different parameters viz., parental mean (PM), specific combining ability (SCA), mean of general combining ability (MGCA) and genetic diversity (GD) were estimated by using Pearson’s correlation.
Result: The hybrids viz., Pant A 441 × AH 09-47 (65.33 g), Pant A 441 × Pusa 2013-2 (64.33 g), Pusa 992 × Pant A 441 (62.67 g), UPAS 120 × Pant A 441 (59.67 g) and UPAS 120 × Pusa 992 (58 g) were found as most promising hybrids for seed yield while the parents Pant A 441 can be used as donor for high seed yield. The estimation of genetic diversity among parents revealed that three different clusters were present. PM, MGCA and SCA were found to be reliable parameters to predict the heterosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.