Mechanical damage is generally considered to be damage that occurs to a pipeline when mechanical excavation, drilling, or boring equipment impinges on a buried pipeline creating scrapes, abrasions, gouges, punctures, and/or dents in the pipeline. Above ground pipelines may also be damaged in a similar manner from impacts by vehicles or projectiles or by willful acts of vandalism. In some cases, immediate failure will occur resulting in potentially catastrophic consequences. It is thus important to understand the conditions that would lead to such a failure in order to ensure that design parameters are selected such that immediate failures occur very rarely. In cases where the damage does not create an immediate failure or the release of gas, the concern generally is that a delayed failure will occur because the integrity of the pipeline has been significantly compromised. In such cases, the possibility is that repeated pressure fluctuations, small increases in pressure, or time-dependent creep will erode whatever margin of safety remains and a failure will ensue. Particularly unsettling are the cases in which damage of this nature is encountered through some form of inspection where the source of the damage and its time of creation are unknown. In such cases, the operator of the pipeline will generally not know what margin of safety remains. There are a number of models in existence that may be used to predict both instantaneous and delayed failures due to mechanical damage and indeed these have been used quite extensively as the basis of repair criteria and for determining safe pipeline operating conditions. Nonetheless, there are significant elements of uncertainty associated with these models and for this reason an adequate reserve factor needs to be incorporated or recourse must be made to probabilistic approaches that address such uncertainty. However, since pipelines are getting older and in some cases are being operated at higher pressures than they were previously, there is a requirement to obtain a better understanding of the significance of mechanical damage. In view of this Pipelines Research Council International (PRCI) and other research bodies, such as European Pipelines Research Group (EPRG), are taking a keen interest in this topic. To this end, PRCI have commissioned an extensive research program to investigate all key aspects of both instantaneous and delayed failures. Kiefner and Associates Incorporated (KAI) and Andrew Francis and Associated Ltd (AFAA) were commissioned to investigate the conditions that cause instantaneous failures. The purpose of this paper is to describe the approach that was adopted and the formulation of the new model that emerged from study. This model is being validated through testing which is currently ongoing.
As part of an important project to reinforce the natural gas transmission network, a new pipeline has been constructed to transport natural gas from a major UK LNG storage facility into the national transmission system. The project involved the installation of several sections by trenchless methods, namely auger boring for a number of road crossings and significant lengths of horizontal directional drilling (HDD) beneath railroads, canals and marshland. The installation of pipelines using trenchless techniques such as HDD continues to increase in popularity. The various methods available offer advantages over traditional open cut techniques, in particular much reduced disruption during the construction of road and rail crossings. Furthermore, increased awareness and responsibility towards the environment leads us to seek installation methods that cause the least disruption at the surface and have the least impact to the environment. It was required to assess the proposed crossing designs against acceptable stress limits set out in company specifications and against the requirements of UK design code IGE/TD/1 Edition 4 [1], which requires that ‘additional loads’ such as soil loadings, thermal loads, settlement and traffic loading are accounted for within the stress calculations. However, it does not stipulate the sources of such equations and the pipeline engineer must rely on other methods and published sources of information. This paper presents the method used to analyse those sections of the new pipeline installed by auger boring and HDD focusing on the methods and formulae used to calculate the stresses in the pipeline from all loading sources.
In-line Inspection (ILI) surveys are periodically performed to determine the condition of the pipeline. Typical ILI surveys involve Magnetic Flux Leakage primarily to determine metal loss and simple single channel Calliper surveys to determine any signs of geometry imperfections. Additional surveys such as high-resolution multi-channel Calliper deformation tools are occasionally used to accurately record imperfections to enable a more accurate assessment of the integrity of the pipeline containing the imperfection. Such tools have had limited employment, and therefore little experience exists of using the data obtainable for the detailed assessment of defects. This paper presents a study of such a case. As part of an In-line Inspection (ILI) of an offshore pipeline, a high-resolution deformation survey recorded numerous dent anomalies which had potentially resulted from a single dragged anchor incident before the pipeline was trenched. This data set was correlated to Magnetic Flux Leakage inspection data to confirm external mechanical damage. Pipeline sections having anomalies that were either found close to girth welds, or had associated corrosion defects were automatically selected for repair. The remaining anomalies were assessed in order to determine their acceptability for the maximum allowable operating pressure using the approaches detailed in API-579. Due to the sharp nature of some of the dents, elastic-plastic finite element analyses (FEA) were performed using denting profiles generated from the calliper data of the ILI run. API-579 level 3 assessments were then carried out using the FEA results. This paper details the high-resolution deformation tool findings and the approach used in order to assess the fitness-for-purpose of the pipe with the recorded anomalies.
All pipelines are susceptible to the possibility of corrosion damage. Corrosion is a time dependent process that leads to localised gradual thinning of the pipeline wall and if allowed to continue will eventually cause failure of the pipewall. Due to the progressive nature of corrosion the likelihood of failure increases with time. One means of mitigating the likelihood of such failures is to perform an in-line inspection using a metal loss detection tool. The frequency of inspection is an important parameter to operators since if it is too high, excessive costs will be incurred and if it is too low, failure involving loss of supply, threats to safety and the environment may follow. Operators therefore seek the optimum frequency. This paper describes a robust method for optimizing inspection intervals based on the use of structural reliability analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.