In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations.
Background The prevalence of peritoneal dialysis (PD) in Thailand is increasing rapidly in part because of Thailand’s Peritoneal Dialysis First policy. PD is a home-based renal replacement therapy in which patients with chronic kidney disease perform up to 4 exchanges of dialysate fluid per day in the peritoneal cavity. Overhydration is one of the most common complications in patients on PD and is associated with increased morbidity and mortality. To monitor hydration status, patients collect hydration metrics, including body weight, blood pressure, urine output, and ultrafiltration volume, from each dialysis cycle and enter this information into a PD logbook. This information is reviewed bimonthly at PD clinic appointments. The chronic kidney disease-PD (CKD-PD) app with near-field communication (NFC) and optical character recognition (OCR) was developed to automate hydration metric collection. The information was displayed in the app for self-monitoring and uploaded to a database for real-time monitoring by the PD clinic staff. Early detection and treatment of overhydration could potentially reduce the morbidity and mortality related to overhydration. Objective This study aims to identify usability issues and technology adoption barriers for the CKD-PD app with NFC and OCR and a monitoring system and to use this information to make rapid cycle improvements. Methods A multidisciplinary team of nephrologists, PD clinic nurses, computer programmers, and engineers trained and observed 2 groups of 5 participants in the use of the CKD-PD app with NFC and OCR and a monitoring system. The participants were observed using technology in their homes in 3 phases. The data collected included the Unified Theory of Acceptance and Use of Technology questionnaire, think-aloud observation, user ratings, completion of hydration metrics, and upload of hydration metrics to the central database. These results were used by the team between phases to improve the functionality and usefulness of the app. Results The CKD-PD app with NFC and OCR and a monitoring system underwent 3 rapid improvement cycles. Issues were identified regarding the usability of the NFC and OCR data collection, app stability, user interface, hydration metric calculation, and display. NFC and OCR improved hydration metric capture; however, issues remained with their usability. App stability and user interface issues were corrected, and hydration metrics were successfully uploaded by the end of phase 3. Participants’ scores on technology adoption decreased but were still high, and there was enthusiasm for the self-monitoring and clinical communication features. Conclusions Our rapid cycle process improvement methodology identified and resolved key barriers and usability issues for the CKD-PD app with NFC and OCR and a monitoring system. We believe that this methodology can be accomplished with limited training in data collection, statistical analysis, and funding.
Non-invasive and accurate method for continuous blood glucose monitoring, the self-testing of blood glucose is in quest for better diagnosis, control and the management of diabetes mellitus (DM). Therefore, this study reports a multiple photonic band near-infrared (mbNIR) sensor augmented with personalized medical features (PMF) in Shallow Dense Neural Networks (SDNN) for the precise, inexpensive and pain free blood glucose determination. Datasets collected from 401 blood samples were randomized and trained with ten-fold validation. Additionally, a cohort of 234 individuals not included in the model training set were investigated to evaluate the performance of the model. The model achieved the accuracy of 97.8% along with 96.0% precision, 94.8% sensitivity and 98.7% specificity for DM classification based on a diagnosis threshold of 126 mg/dL for diabetes in fasting blood glucose. For non-invasive real-time blood glucose monitoring, the model exhibited ± 15% error with 95% confidence interval and the detection limit of 60–400 mg/dL, as validated with the standard hexokinase enzymatic method for glucose estimation. In conclusion, this proposed mbNIR based SDNN model with PMF is highly accurate and computationally cheaper compared to similar previous works using complex neural network. Some groups proposed using complicated mixed types of sensors to improve noninvasive glucose prediction accuracy; however, the accuracy gain over the complexity and costs of the systems harvested is still in questioned (Geng et al. in Sci Rep 7:12650, 2017). None of previous works report on accuracy enhancement of NIR/NN using PMF. Therefore, the proposed SDNN over PMF/mbNIR is an extremely promising candidate for the non-invasive real-time blood glucose monitoring with less complexity and pain-free.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.