Globally, climate change and extreme weather events are occurring more frequently, impacting water resources and farming systems. Therefore, spatio-temporal analysis of long-term rainfall is much needed to understand the variability of rainfall occurrence. The present study attempts to analyse spatio-temporal rainfall change scenarios in the 20th century (1901–2000) over Bundelkhand, one of the drought hit regions of India. Analysis shows that major rainfall contributed from 3 months, i.e. July, August and September. However, decreasing rainfall trend during monsoon season and increasing trend during pre-monsoon and post-monsoon season indicates the scenario of shifting rainfall from normal occurrence. This result is supported by decreasing seasonality index (SI) (1.94–1.1). The northern part of the region witnessed positive annual and monsoon rainfall trend but the southern part observed negative trend. Pettitt's test indicates 1983 is the most probable change year with 0.95 probability, after which annual and monsoon rainfall was found decreasing. Wavelet analysis revealed that extreme rainfall occurrence was observed with a periodicity of 2–16 years. However, Bundelkhand rainfall pattern depicts declining rainfall trends, heading towards a further drier phase with more irregular rainfall in the coming era. The study will serve as future reference in similar regions in the world to determine vital weather patterns which may impact farming systems.
Erosion by water reduces soil quality and hence crop yield. Understanding the response of crop yields to soil erosion is vital in assessing agriculture’s vulnerability to erosion. However, these effects are difficult to quantify. The study presents a quantitative relationship between soil erosion and soil quality and productivity of rainfed wheat (Triticum aestivum) by comparing field plots with different degrees of erosion in some sub-tropical alfisols in the Doon Valley region of India. By comparing the topsoil depth with the reference site as the control, erosion severity was classified into different phases such as slight, moderate, severe, and very severe. A quantitative, weighted additive model was used to evaluate soil quality for different phases of erosion using soil clay content, water holding capacity, soil aggregate, soil organic carbon, pH, CEC, total N, available P, and available K. The synthesis of long-term experimental data revealed that the mean soil erosion rate varied from 5.5 Mg ha−1 yr−1 in slightly eroded plots to 33.4 Mg ha−1 yr−1 in very severely eroded plots. Compared with the reference forest, the soil organic carbon (SOC) declined by 81.4% and water holding capacity by 31% in severely eroded soils. A substantial loss of total N, extractable P, and available K was also observed. Water stable aggregates (WSA) decreased from 86% to 12.6%, and the cation exchange capacity (CEC) from 25 to 12.6 c mol(+) kg−1. The soil quality index was 0.7 in slightly eroded compared with 0.4 in severely eroded soil. Similarly, the sustainable yield index for wheat was 0.9 and 0.6 for slightly and severely eroded soils, respectively. Thus, there is a strong need to identify land management systems that reduce erosion risks, restore eroded soils, and enhance soil quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.