Total concentrations and speciation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in surface sediment samples were correlated with the respective metal measured in the total soft tissue of the green-lipped mussel Perna viridis, collected from water off the west coast of Peninsular Malaysia. The aim of this study is to relate the possible differences in the accumulation patterns of the heavy metals in P. viridis to those in the surface sediment. The sequential extraction technique was employed to fractionate the sediment into 'freely leachable and exchangeable' (EFLE), 'acid-reducible,' 'oxidisable-organic' and 'resistant' fractions. The results showed that significant (P<.05) correlations were observed between Cd in P. viridis and Cd in the sediment (EFLE fraction and total Cd), Cu in P viridis and Cu in the sediment (EFLE and 'acid-reducible' fractions and total Cu) and Pb in P viridis and Pb in the sediment ('oxidisable-organic' fraction and total Pb). No significant correlation (P > .05) was found between Zn in P viridis and all the sediment geochemical fractions of Zn and total Zn in the sediment. This indicated that Zn was possibly regulated from the soft tissue of P. viridis. The present results supported the use of P viridis as a suitable biomonitoring agent for Cd, Cu and Pb.
A total of 40 marine mussel Perna viridis populations collected (2002-2009) from 20 geographical sites located in two busy shipping lanes namely the Straits of Malacca (10 sites; 16 populations) and the Straits of Johore (8 sites; 21 populations) and three populations (2 sites) on the east coast of Peninsular Malaysia, was determined for Cd, Cu, Fe, Ni, Pb and Zn concentrations. In comparison with the maximum permissible limits (MPLs) set by existing food safety guidelines, all metal concentrations found in all the mussel populations were lower than the prescribed MPLs. In terms of the provisional tolerable weekly intake prescribed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference doses (ORDs) by the USEPA, all the studied metals (except for Pb) were unlikely to become the limiting factors or unlikely to pose a risk for the consumption of the mussel populations. The estimated daily intake (EDI) for average level mussel (ALM) and high level mussel (HLM) consumers of mussels was found to be lower than the ORD guidelines for Cd, Cu, Fe, Ni and Zn. Furthermore, the target hazard quotient (THQ) was found to be less than 1 for ALM consumers but higher than 1 for HLM consumers in some sites. Therefore, there were no potential human health risks to the ALM consumers of the mussels. However, for Pb THQ values, the Pb levels in some mussel populations could create a health risk problem. Present results indicate that the consumption amounts of mussels should be limited for minimizing potential health risks of heavy metals to the HLM consumers.
Concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediments to investigate the distributions, concentrations and the pollution status of heavy metals in Dumai coastal waters. Sediment samples from 23 stations, representing 5 different site groups of eastern, central and western Dumai and southern and northern Rupat Island, were collected in May 2005. The results showed that heavy metal concentrations (in microg/g dry weight; Fe in %) were 0.88 (0.46-1.89); 6.08 (1.61-13.84); 32.34 (14.63-84.90); 53.89 (31.49-87.11); 11.48 (7.26-19.97) and 3.01 (2.10-3.92) for Cd, Cu, Pb, Zn, Ni and Fe, respectively. Generally, metal concentrations in the coastal sediments near Dumai city center (eastern and central Dumai) which have more anthropogenic activities were higher than those at other stations. Average concentration of Cd in the eastern Dumai was slightly higher than effective range low (ERL) but still below effective range medium (ERM) value established by Long et al. (Environmental Management 19(1):81-97, 1995; Environmental Toxicology Chemistry 17(4):714-727, 1997). All other metals were still below ERL and ERM. Calculated enrichment factor (EF), especially for Cd and Pb, and the Pollution load index (PLI) value in the eastern Dumai were also higher than other sites. Cd showed higher EF when compared to other metals. Geo-accumulation indices (I(geo)) in most of the stations (all site groups) were categorized as class 1 (unpolluted to moderately polluted environment) and only Cd in Cargo Port was in class 2 (moderately polluted). Heavy metal concentrations found in the present study were comparable to other regions of the world and based on the calculated indices it can be classified as unpolluted to moderately polluted coastal environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.