The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.
This study presents a model to effectively recognise image noise of different types and levels: impulse, Gaussian, Speckle and Poisson noise, and a mixture of multiple types of the noise. To classify image noise type, the convolutional neural network (CNN) method with backpropagation algorithm and stochastic gradient descent optimisation techniques are implemented. In order to reduce the training time and computational cost of the algorithm, the principal components analysis (PCA) filters generating strategy is deployed to obtain data adaptive filter banks. The authors validated their designed CNN with PCA for noise types recognition model with degraded images containing noise of single and combination of multiple types, with a total of 11,000 and 1650 datasets for training and testing purposes, respectively. The variety and complexity of data have never been addressed before in any other research work. The capability of their intelligent system in handling images degraded under this complicated environment has surpassed human‐eye performance in noise types recognition. The authors’ experiments have proven the reliability of the proposed noise types recognition model by having achieved an overall average accuracy of 99.3% while recognising eight classes of noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.