Modern surveillance systems often utilize multiple physically distributed sensors of different types to provide complementary and overlapping coverage on targets. In order to generate target tracks and estimates, the sensor data need to be fused. While a centralized processing approach is theoretically optimal, there are significant advantages in distributing the fusion operations over multiple processing nodes. This paper discusses architectures for distributed fusion, whereby each node processes the data from its own set of sensors and communicates with other nodes to improve on the estimates. The information graph is introduced as a way of modeling information flow in distributed fusion systems and for developing algorithms. Fusion for target tracking involves two main operations: estimation and association. Distributed estimation algorithms based on the information graph are presented for arbitrary fusion architectures and related to linear and nonlinear distributed estimation results. The distributed data association problem is discussed in terms of track-to-track association likelihoods. Distributed versions of two popular tracking approaches (joint probabilistic data association and multiple hypothesis tracking) are then presented, and examples of applications are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.