We study the folding of the regular two-dimensional triangular lattice embedded in the regular three-dimensional Face-Centred Cubic lattice, a discrete model for the crumpling of membranes. Possible folds are complete planar folds, folds with the angle of a regular tetrahedron (71• ) or with that of a regular octahedron (109 • ). We study this model in the presence of a negative bending rigidity K, which favours the folding process. We use both a cluster variation method (CVM) approximation and a transfer matrix approach. The system is shown to undergo two separate geometrical transitions with increasing |K|: a first discontinuous transition separates a phase where the triangular lattice is preferentially wrapped around octahedra from a phase where it is preferentially wrapped around tetrahedra. A second continuous transition separates this latter phase from a phase of complete folding of the lattice on top of a single triangle. 11/96
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.