In this work, we propose a method to determinate the optimum thickness of a monofacial silicon solar cell under irradiation. The expressions of back surface recombination velocity depending the damage coefficient (kl) and irradiation energy (p φ) are established. From their plots, base optimum thickness is deduced from the intercept points of the curves. The short-circuit currents Jsc0 and Jsc1 corresponding to the recombination velocity Sb0 and Sb1 are determinated and a correlation between the irradiation energy, the damage coefficient and optimum thickness of the base is established.
In this paper, a hybrid electric power supply system for an electric vehicle (EV) is investigated. The study aims to reduce electric stress on the main energy source (fuel cell) and boost energetic performances using energy sources with high specific power (supercapacitors, batteries) for rapid traction chain solicitations such as accelerations, decelerations, and braking operations. The multisource EV power supply system contains a fuel cell stack, a lithium batteries module, and a supercapacitors (Sc) pack. In order to emulate the EV energy demand (wheels, weight, external forces, etc.), a bidirectional load based on a reversible current DC-DC converter was used. Fuel cell (Fc) stack was interfaced by an interleaved boost converter. Batteries and the Sc pack were coupled to the DC point of coupling via buck/boost converters. Paper contribution was firstly concentrated on the distribution of energy and power between onboard energy sources in consonance with their dynamic characteristics (time response). Second contribution was based on a new Sc model, which takes into consideration the temperature and the DC current ripples frequency until 1000 Hz. Energy management strategy (EMS) was evaluated by simulations and reduced scale experimental tests. The used driving cycle was the US Federal Test Procedure known as FTP-75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.