In this paper, an effective control strategy is proposed to manage energy distribution from fuel cells and batteries for hybrid electric boat applications. The main objectives of this real-time control are to obtain fast current tracking for the batteries’ system, the DC bus voltage stability by using a fuel cell, and energy load distribution for a hybrid electric boat under varying demand conditions. The proposed control strategy is based on a combination of frequency approach and current/voltage control of interleaved boost converters to reduce the hydrogen consumption by the fuel cell and improve the quality of energy transfer. The frequency approach was dedicated to managing the DC power-sharing between the load, the fuel cell, and the batteries’ storage system by extracting the power references. The closed loop control system utilized to control the energy is based on the DC/DC converters. The performance evaluation of the proposed control strategy has been tested through a real-time experimental test bench based on a dSPACE board (DS1104).
In this paper, a hybrid electric power supply system for an electric vehicle (EV) is investigated. The study aims to reduce electric stress on the main energy source (fuel cell) and boost energetic performances using energy sources with high specific power (supercapacitors, batteries) for rapid traction chain solicitations such as accelerations, decelerations, and braking operations. The multisource EV power supply system contains a fuel cell stack, a lithium batteries module, and a supercapacitors (Sc) pack. In order to emulate the EV energy demand (wheels, weight, external forces, etc.), a bidirectional load based on a reversible current DC-DC converter was used. Fuel cell (Fc) stack was interfaced by an interleaved boost converter. Batteries and the Sc pack were coupled to the DC point of coupling via buck/boost converters. Paper contribution was firstly concentrated on the distribution of energy and power between onboard energy sources in consonance with their dynamic characteristics (time response). Second contribution was based on a new Sc model, which takes into consideration the temperature and the DC current ripples frequency until 1000 Hz. Energy management strategy (EMS) was evaluated by simulations and reduced scale experimental tests. The used driving cycle was the US Federal Test Procedure known as FTP-75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.