Improved viability of Gram-negative bacteria during freeze-dehydration, storage, and soil inoculation is of crucial importance to their efficient application. The chitinolytic Pantoae (Enterobacter) agglomerans strain IC1270, a potential biocontrol agent of soil-borne plant-pathogenic fungi, was used as a model organism to study the efficacy of freeze-dried alginate-based beads (macrocapsules) as possible carriers for immobilized Gram-negative bacterial cells. These macrocapsules were produced by freeze-dehydration of alginate gel spherical beads, in which different amounts of bacteria, glycerol, and colloidal chitin were entrapped. Subsequent drying produced different unexpected structures, pore-size distributions, and changes in the outer and inner appearance of the resultant dried cellular solid. With increasing glycerol content, the proportion of larger pores increased. These structures can be related to changes in the slow-release properties of the dried beads. The amount of glycerol in the beads differed from that in the alginate solution as a result of leakage during the beads' preparation and dehydration. Entrapping 10(9) cells per bead produced from alginate solution containing 30% glycerol and 1% chitin resulted in improved (in comparison to other studies) survival prospects (95%) during freeze-drying. Moreover, immobilization of the bacterium sharply improved its survival in nonsterile irrigated and dry soils compared to bacteria in a water suspension. The results suggest that optimized conservation of Gram-negative bacteria in dry glycerol-containing alginate-based cellular solids is not only possible but applicable for a variety of uses.
Soil microorganisms in general and biocontrol agents in particular are very sensitive to UV light. The packaging of biocontrol microorganisms into cellular solids has been developed as a means of reducing loss caused by exposure to environmental UV radiation. The bacterial and fungal biocontrol agents Pantoea agglomerans and Trichoderma harzianum were immobilized in freeze-dried alginate beads containing fillers and subjected to 254 nm UV radiation (UVC). Immobilization of cells in freeze-dried alginate-glycerol beads resulted in greater survival after UV irradiation than for a free cell suspension. Adding chitin, bentonite or kaolin as fillers to the alginate-glycerol formulation significantly increased bacterial survival. Immobilization in alginate-glycerol-kaolin beads resulted in the highest levels of survival. The transmissive properties of the dried hydrocolloid cellular solid had a major influence on the amount of protection by the cell carrier. Dried alginate matrix (control) transmitted an average of 7.2% of the radiation. Filler incorporation into the matrix significantly reduced UV transmission: Alginate with kaolin, bentonite and chitin transmitted an average of 0.15, 0.38 and 3.4% of the radiation, respectively. In addition, the filler inclusion had a considerable effect on the bead's average wall thickness, resulting in a approximately 1.5- to threefold increase relative to beads based solely on alginate. These results suggest that the degree of protection of entrapped microorganisms against UVC radiation is determined by the UV-transmission properties of the dried matrix and the cellular solid's structure. It is concluded that for maximum protection against UV-radiation-induced cell loss, biocontrol microorganisms should be immobilized in alginate-glycerol beads containing kaolin.
Immobilization refers to the prevention of free cell movement by natural or artificial means. It has always been assumed that immediately after an immobilization procedure is performed, cells are distributed homogeneously in the beads that entrap them. However, in this study, Escherichia coli and Trichoderma asperellum distribution in alginate-gel beads was found to be nonhomogeneous. In fact, there was a greater presence of cells on the surface of the alginate beads than in their cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.