[Fe-S] clusters, nature's modular electron transfer units, are often arranged in chains that support long-range electron transfer. Despite considerable interest, the design of biomimetic artificial systems emulating multicluster-binding proteins, with the final goal of integrating them in man-made oxidoreductases, remains elusive. Here, we report a novel bis-[4Fe-4S] cluster binding protein, DSD-Fdm, in which the two clusters are positioned within a distance of 12 Å, compatible with the electronic coupling necessary for efficient electron transfer. The design exploits the structural repeat of coiled coils as well as the symmetry of the starting scaffold, a homodimeric helical protein (DSD). In total, eight hydrophobic residues in the core of DSD were replaced by eight cysteine residues that serve as ligands to the [4Fe-4S] clusters. Incorporation of two [4Fe-4S] clusters proceeds with high yield. The two [4Fe-4S] clusters are located in the hydrophobic core of the helical bundle as characterized by various biophysical techniques. The secondary structure of the apo and holo proteins is conserved; further, the incorporation of clusters results in stabilization of the protein with respect to chemical denaturation. Most importantly, this de novo designed protein can mimic the function of natural ferredoxins: we show here that reduced DSD-Fdm transfers electrons to cytochrome c, thus generating the reduced cyt c stoichiometrically.
Three Pd(II) phthalocyanine-carotenoid dyads featuring chromophores linked by amide bonds were prepared in order to investigate the rate of triplet-triplet (T-T) energy transfer from the tetrapyrrole to the covalently attached carotenoid as a function of the number of conjugated double bonds in the carotenoid. Carotenoids having 9, 10 and 11 conjugated double bonds were studied. Transient absorption measurements show that intersystem crossing in the Pd(II) phthalocyanine takes place in 10 ps in each case and that T-T energy transfer occurs in 126, 81 and 132 ps in the dyads bearing 9, 10 and 11 double bond carotenoids, respectively. To identify the origin of this variation in T-T energy transfer rates, density functional theory (DFT) was used to calculate the T-T electronic coupling in the three dyads. According to the calculations, the primary reason for the observed T-T energy transfer trend is larger T-T electronic coupling between the tetrapyrrole and the 10-double bond carotenoid. A methyl group adjacent to the amide linker that connects the Pd(II) phthalocyanine and the carotenoid in the 9 and 11-double bond carotenoids is absent in the 10-double bond carotenoid, and this difference alters its electronic structure to increase the coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.