PurposeThe objective of this work is to study the periodic solutions for a class of sixth-order autonomous ordinary differential equations x(6)+(1+p2+q2)x… .+(p2+q2+p2q2)x¨+p2q2x=εF(x,ẋ,x¨,x…,x… .,x(5)), where p and q are rational numbers different from 1, 0, −1 and p ≠ q, ε is a small enough parameter and F ∈ C2 is a nonlinear autonomous function.Design/methodology/approachThe authors shall use the averaging theory to study the periodic solutions for a class of perturbed sixth-order autonomous differential equations (DEs). The averaging theory is a classical tool for the study of the dynamics of nonlinear differential systems with periodic forcing. The averaging theory has a long history that begins with the classical work of Lagrange and Laplace. The averaging theory is used to the study of periodic solutions for second and higher order DEs.FindingsAll the main results for the periodic solutions for a class of perturbed sixth-order autonomous DEs are presenting in the Theorem 1. The authors present some applications to illustrate the main results.Originality/valueThe authors studied Equation 1 which depends explicitly on the independent variable t. Here, the authors studied the autonomous case using a different approach.
PurposeThis study aims to provide sufficient conditions for the existence of periodic solutions of the fifth-order differential equation.Design/methodology/approachThe authors shall use the averaging theory, more precisely Theorem $6$.FindingsThe main results on the periodic solutions of the fifth-order differential equation (equation (1)) are given in the statement of Theorem 1 and 2.Originality/valueIn this article, the authors provide sufficient conditions for the existence of periodic solutions of the fifth-order differential equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.