AbstractIn this article, we provide sufficient conditions for the existence of periodic solutions of the eighth-order differential equation
{x^{\left( 8 \right)}} - \left( {1 + {p^2} + {\lambda ^2} + {\mu ^2}} \right){x^{\left( 6 \right)}} + A\ddddot x + B\ddot x + {p^2}{\lambda ^2}{\mu ^2}x = \varepsilon F\left( {t,x,\dot x,\ddot x,\dddot x,\ddddot x,{x^{\left( 5 \right)}},{x^{\left( 6 \right)}}{x^{\left( 7 \right)}}} \right),
where A = p2λ2 + p2µ2 + λ2µ2 + p2 + λ2 + µ2, B = p2 λ2 + p2µ2 + λ2µ2 + p2λ2µ2, with λ, µ and p are rational numbers different from −1, 0, 1, and p ≠ ±λ, p ≠±µ, λ ≠±µ, ɛ is sufficiently small and F is a nonlinear non-autonomous periodic function. Moreover we provide some applications.
PurposeThis study aims to provide sufficient conditions for the existence of periodic solutions of the fifth-order differential equation.Design/methodology/approachThe authors shall use the averaging theory, more precisely Theorem $6$.FindingsThe main results on the periodic solutions of the fifth-order differential equation (equation (1)) are given in the statement of Theorem 1 and 2.Originality/valueIn this article, the authors provide sufficient conditions for the existence of periodic solutions of the fifth-order differential equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.