Pentachlorophenol (PCP) is an environmental pollutant of serious concern due to its high toxicity and long persistence property. Fast and sensitive detection of PCP is therefore of great interest. In this work, carbon quantum dots (QDs) are synthesized by hydrothermal reaction, and characterized by fluorescence spectrophotometer, fourier transform infrared (FT-IR) spectroscopy, UV/vis/NIR spectrophotometer and scanning electron microscopy (SEM). The carbon QDs show stable and intensive electrogenerated chemiluminescence (ECL) in the presence of the coreactant S2O8(2-). Under the scanning potential of -1.2 to 0.5 V, PCP reacts with the excited C˙(-), resulting in a decrease in ECL. The detection of trace level PCP is therefore achieved using the carbon QDs and Pt working electrode. Parameters that may affect the ECL intensity including the pH of solution, ionic strength, concentrations of coreactant and carbon QDs are optimized. Under the optimal conditions, a detection limit of 1.3 × 10(-12) g L(-1) is achieved with a linear range of 10 pg L(-1)∼1.0 μg L(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.