A novel scheme that combines gain switching with passive Q switching of a miniature diode-pumped solid-state laser is proposed and implemented. A composite pumping pulse, consisting of a long, low-intensity pulse and a following short, high-intensity pulse, is used to reduce the timing jitter. A greater-than-tenfold reduction in timing jitter is demonstrated.
Standoff detections of explosives using quantum cascade lasers (QCLs) and the photoacoustic (PA) technique were studied. In our experiment, a mid-infrared QCL with emission wavelength near 7.35 μm was used as a laser source. Direct standoff PA detection of trinitrotoluene (TNT) was achieved using an ultrasensitive microphone. The QCL output light was focused on explosive samples in powder form. PA signals were generated and detected directly by an ultrasensitive low-noise microphone with 1 in. diameter. A detection distance up to 8 in. was obtained using the microphone alone. With increasing detection distance, the measured PA signal not only decayed in amplitude but also presented phase delays, which clearly verified the source location. To further increase the detection distance, a parabolic sound reflector was used for effective sound collection. With the help of the sound reflector, standoff PA detection of TNT with distance of 8 ft was demonstrated.
The dc photocurrents generated by steady-state moving space-charge fields inside photoconductive semiconductors containing deep level donors and traps can be used to determine the relative frequency differences between the two interfering optical fields that establish the space-charge fields. A simple laser velocimeter that uses a semi-insulating GaAs:Cr sample to detect the Doppler frequency shift between two laser beams is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.