The regulatory role of non-CpG methylation in mammals has been important in whole-genome bisulfite sequencing. It has also been suggested that non-CpG methylation regulates gene expression to affect the development and health of mammals. However, the dynamic regulatory mechanisms of genome-wide, non-CpG methylation during testicular development still require intensive study. In this study, we analyzed the dataset from the whole-genome bisulfite sequencing (WGBS) and the RNA-seq of precocious porcine testicular tissues across two developmental stages (1 and 75 days old) in order to explore the regulatory roles of non-CpG methylation. Our results showed that genes regulated by non-CpG methylation affect the development of testes in multiple pathways. Furthermore, several hub genes that are regulated by non-CpG methylation during testicular development—such as VEGFA, PECAM1, and FZD7—were also identified. We also found that the relative expression of FZD7 was downregulated by the zebularine-induced demethylation of the first exon of FZD7. This regulatory relationship was consistent with the results of the WGBS and RNA-seq analysis. The immature porcine Sertoli cells were transfected with RNAi to mimic the expression patterns of FZD7 during testicular development. The results of the simulation test showed that cell proliferation was significantly impeded and that cell cycle arrest at the G2 phase was caused by the siRNA-induced FZD7 inhibition. We also found that the percentage of early apoptotic Sertoli cells was decreased by transfecting them with the RNAi for FZD7. This indicates that FZD7 is an important factor in linking the proliferation and apoptosis of Sertoli cells. We further demonstrated that Sertoli cells that were treated with the medium collected from apoptotic cells could stimulate proliferation. These findings will contribute to the exploration of the regulatory mechanisms of non-CpG methylation in testicular development and of the relationship between the proliferation and apoptosis of normal somatic cells.
Understanding the genetic variations of the horse (Equus caballus) genome will improve breeding conservation and welfare. However, genetic variations in long segments, such as structural variants (SVs), remain understudied. We de novo assembled 10 chromosome‐level three‐dimensional horse genomes, each representing a distinct breed, and analysed horse SVs using a multi‐assembly approach. Our findings suggest that SVs with the accumulation of mammalian‐wide interspersed repeats related to long interspersed nuclear elements might be a horse‐specific mechanism to modulate genome‐wide gene regulatory networks. We found that olfactory receptors were commonly loss and accumulated deleterious mutations, but no purge of deleterious mutations occurred during horse domestication. We examined the potential effects of SVs on the spatial structure of chromatin via topologically associating domains (TADs). Breed‐specific TADs were significantly enriched by breed‐specific SVs. We identified 4199 unique breakpoint‐resolved novel insertions across all chromosomes that account for 2.84 Mb sequences missing from the reference genome. Several novel insertions might have potential functional consequences, as 519 appeared to reside within 449 gene bodies. These genes are primarily involved in pathogen recognition, innate immune responses and drug metabolism. Moreover, 37 diverse horses were resequenced. Combining this with public data, we analysed 97 horses through a comparative population genomics approach to identify the genetic basis underlying breed characteristics using Thoroughbreds as a case study. We provide new scientific evidence for horse domestication, an understanding of the genetic mechanism underlying the phenotypic evolution of horses, and a comprehensive genetic variation resource for further genetic studies of horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.