Protein glycosylation has received increased attention for its critical role in cell biology and diseases. Developing new methodologies to discern phenotype-dependent glycosylation will not only elucidate the mechanistic aspects of cell signaling cascades but also accelerate biomarker discovery for disease diagnosis or prognosis. In the analytical pipeline, enrichment at either the protein or peptide level is the most critical prerequisite for analyzing heterogeneous glycan composition, linkage, site occupancy and carrier proteins. Because the critical factor for choosing a suitable enrichment method is primarily a particular technique's selectivity and affinity towards target glycoproteins/glycopeptides, it is important to fully understand the working principles for the different approaches. For mechanistic insight into the enrichment protocol, we focused on the fundamental chemical and physical processes for the commonly used approaches based on: (a) glycan/peptide physicochemical properties (hydrophilic interactions, chelation/coordination chemistry) and (b) glycan-specific recognition (lectin-based affinity, covalent bond formation by hydrazide/boronic acid). Various interaction modes, such as hydrogen bonding, van der Waals interaction, multivalency, and metal- or water-mediated stabilization, are discussed in detail. In addition, we will review the design of and modifications to such methods, hyphenated approaches, and glycoproteomic applications. Finally, we will outline challenges to existing strategies and offer novel proposals for glycoproteome enrichment.
Glycosylation is a highly complex modification influencing the functions and activities of proteins. Interpretation of intact glycopeptide spectra is crucial but challenging. In this paper, we present a mass spectrometry-based automated glycopeptide identification platform (MAGIC) to identify peptide sequences and glycan compositions directly from intact N-linked glycopeptide collision-induced-dissociation spectra. The identification of the Y1 (peptideY0 + GlcNAc) ion is critical for the correct analysis of unknown glycoproteins, especially without prior knowledge of the proteins and glycans present in the sample. To ensure accurate Y1-ion assignment, we propose a novel algorithm called Trident that detects a triplet pattern corresponding to [Y0, Y1, Y2] or [Y0-NH3, Y0, Y1] from the fragmentation of the common trimannosyl core of N-linked glycopeptides. To facilitate the subsequent peptide sequence identification by common database search engines, MAGIC generates in silico spectra by overwriting the original precursor with the naked peptide m/z and removing all of the glycan-related ions. Finally, MAGIC computes the glycan compositions and ranks them. For the model glycoprotein horseradish peroxidase (HRP) and a 5-glycoprotein mixture, a 2- to 31-fold increase in the relative intensities of the peptide fragments was achieved, which led to the identification of 7 tryptic glycopeptides from HRP and 16 glycopeptides from the mixture via Mascot. In the HeLa cell proteome data set, MAGIC processed over a thousand MS(2) spectra in 3 min on a PC and reported 36 glycopeptides from 26 glycoproteins. Finally, a remarkable false discovery rate of 0 was achieved on the N-glycosylation-free Escherichia coli data set. MAGIC is available at http://ms.iis.sinica.edu.tw/COmics/Software_MAGIC.html .
The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme β1,3-galactosyltransferase V (β3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of β3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of β3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.