Glycomics is emerging as a new field for the biology of complex glycoproteins and glycoconjugates. The lack of versatile glycanlabeling methods has presented a major obstacle to visualizing at the cellular level and studying glycoconjugates.
Protein glycosylation is an important posttranslational process, which regulates protein folding and functional expression. Studies have shown that abnormal glycosylation in tumor cells affects cancer progression and malignancy. In the current study, we have identified sialylated proteins using an alkynyl sugar probe in two different lung cancer cell lines, CL1-0 and CL1-5 with distinct invasiveness derived from the same parental cell line. Among the identified sialylated proteins, epidermal growth factor receptor (EGFR) was chosen to understand the effect of sialylation on its function. We have determined the differences in glycan sequences of EGFR in both cells and observed higher sialylation and fucosylation of EGFR in CL1-5 than in CL1-0. Further study suggested that overexpression of sialyltransferases in CL1-5 and α1,3-fucosyltransferases (FUT4 or FUT6) in CL1-5 and A549 cells would suppress EGFR dimerization and phosphorylation upon EGF treatment, as compared to the control and CL1-0 cells. Such modulating effects on EGFR dimerization were further confirmed by sialidase or fucosidase treatment. Thus, increasing sialylation and fucosylation could attenuate EGFRmediated invasion of lung cancer cells. However, incorporation of the core fucose by α1,6-fucosylatransferase (FUT8) would promote EGFR dimerization and phosphorylation.sialic acid | glycoproteomics | glycan sequencing | click chemistry | mass spectrometry
Developing tools for investigating the cellular activity of glycans will help to delineate the molecular basis for aberrant glycosylation in pathological processes such as cancer. Metabolic oligosaccharide engineering, which inserts sugar-reporting groups into cellular glycoconjugates, represents a powerful method for imaging the localization, trafficking, and dynamics of glycans and isolating them for glyco-proteomic analysis. Herein, we show that the alkyne-reporting group can be incorporated into cellular glycans. The alkyne group is a small, inert, bio-orthogonal handle that can be chemoselectively labeled by using the Cu(I) catalyzed [3 ؉ 2] azide-alkyne cycloaddition, or click chemistry. Alkynyl sugar monomers, based on fucose (Fuc) and N-acetylmannosamine (ManNAc), were incorporated into fucosylated and sialylated glycans in several cancer cell lines, allowing for cell surface and intracellular visualization of glycoconjugates, as well as, observation of alkyne-bearing glycoproteins. Similarly to our previous results with an azido Fuc/alkynyl probe system, we demonstrated that click-activated fluorogenic probes are practical tools for efficiently and selectively labeling alkynyl-modified glycans. Because Fuc and sialic acid are terminal glycan residues with a notably increased presence in many tumors, we hope that our method will provide useful information about their roles in cancer and ultimately can be used for diagnostic and therapeutic purposes.click chemistry ͉ fluorescent imaging ͉ fucose ͉ sialic acid
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the -sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc 2, improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.glycoprotein stability ͉ N-glycan function ͉ N-glycosylation ͉ protein folding ͉ kinetics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.